传送门:Buried memory
苍天饶过谁,第三次在hdoj上 交计算几何的题了,没一次是AC的。
┭┮﹏┭┮都是模板题啊,我都是抄板子的啊,为什么会这样,我怎么这么菜。
题意:
求最小圆覆盖 的 圆心,半径,保留2位小数
分析
我的代码参考的是 俞勇老师的 《ACM国际大学生程序设计竞赛 算法与实现》 中的最小圆覆盖代码。
算法过程如下
参考:https://blog.csdn.net/commonc/article/details/52291822
知识点
三角形外接圆的圆心(外心):任意两边的垂直平分线的交点
三角形的内切圆的圆心(内心):三角形三条角平分线的交点。
重心:中线的交点
垂心:垂心的交点
旁心:三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心
Online AC Code And My Wrong Code
/*************************************************************************
> File Name: hdu_3007.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年05月04日 星期一 18时42分33秒
************************************************************************/
/*最小圆覆盖*/
/*给定n个点, 让求半径最小的圆将n个点全部包围,可以在圆上*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define EPS 1e-8
using namespace std;
const int maxn = 550;
struct point{
double x, y;
};
int sgn(double x)
{
if (fabs(x) < EPS)
return 0;
return x < 0 ? -1 : 1;
}
double get_distance(const point a, const point b)//两点之间的距离
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
point get_circle_center(const point a, const point b, const point c)//得到三角形外接圆的圆心
{
point center;
double a1 = b.x - a.x;
double b1 = b.y - a.y;
double c1 = (a1 * a1 + b1 * b1) / 2.0;
double a2 = c.x - a.x;
double b2 = c.y - a.y;
double c2 = (a2 * a2 + b2 * b2) / 2.0;
double d = a1 * b2 - a2 * b1;
center.x = a.x + (c1 * b2 - c2 * b1) / d;
center.y = a.y + (a1 * c2 - a2 * c1) / d;
return center;
}
//p表示定点, n表示顶点的个数, c代表最小覆盖圆圆心, r是半径
void min_cover_circle(point *p, int n, point &c, double &r)//找最小覆盖圆(这里没有用全局变量p[], 因为是为了封装一个函数便于调用)
{
random_shuffle(p, p + n);//随机函数,使用了之后使程序更快点,也可以不用
c = p[0];
r = 0;
for (int i = 1; i < n; i++)
{
if (sgn(get_distance(p[i], c) - r) > 0)//如果p[i]在当前圆的外面, 那么以当前点为圆心开始找
{
c = p[i];//圆心为当前点
r = 0;//这时候这个圆只包括他自己.所以半径为0
for (int j = 0; j < i; j++)//找它之前的所有点
{
if (sgn(get_distance(p[j], c) - r) > 0)//如果之前的点有不满足的, 那么就是以这两点为直径的圆
{
c.x = (p[i].x + p[j].x) / 2.0;
c.y = (p[i].y + p[j].y) / 2.0;
r = get_distance(p[j], c);
for (int k = 0; k < j; k++)
{
if (sgn(get_distance(p[k], c) - r) > 0)//找新作出来的圆之前的点是否还有不满足的, 如果不满足一定就是三个点都在圆上了
{
c = get_circle_center(p[i], p[j], p[k]);
r = get_distance(p[i], c);
}
}
}
}
}
}
}
int main()
{
int n;
point p[maxn];
point c; double r;
while (~scanf("%d", &n) && n)
{
for (int i = 0; i < n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y);
min_cover_circle(p, n, c, r);
printf("%.2lf %.2lf %.2lf
", c.x, c.y, r);
}
return 0;
}
//My Wrong Code
/*
Wrong Answer!!!
Why ???
绝望了,和网上的AC代码思路一模一样啊。
*/
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=505;
const int pi=acos(-1.0);
const double eps=1e-8;
int cmp(double x)
{
if(fabs(x)<eps) return 0;
if(x>0) return 1;
return -1;
}
inline double sqr(double x)
{
return x*x;
}
struct point
{
double x,y;
point() {}
point(double a,double b):x(a),y(b) {}
void input()
{
scanf("%lf%lf",&x,&y);
}
friend point operator + (const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator - (const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
double norm()
{
return sqrt(sqr(x)+sqr(y));
}
};
double dist(const point& a,const point &b)
{
return (a-b).norm();
}
void circle_center(point p0,point p1,point p2,point &cp)
{
double a1=p1.x-p0.x,b1=p1.y-p0.y,c1=(a1*a1+b1*b1)/2;
double a2=p2.x-p0.x,b2=p2.y-p0.y,c2=(a2*a2+b2*b2)/2;
double d=a1*b2 - a2*b1;
cp.x=p0.x+(c1*b2 - c2*b1)/d;
cp.y=p0.y+(a1*c2 - a2*c1)/d;
}
void circle_center(point p0,point p1,point &cp)
{
cp.x=(p0.x+p1.x)/2;
cp.y=(p0.y+p1.y)/2;
}
point center;
double radius;
bool point_in(const point &p)
{
return cmp((p-center).norm()-radius)<=0;
}
void min_circle_cover(point a[],int n)
{
// 打乱
random_shuffle(a, a + n);
radius =0;
center=a[0];
for(int i=1; i<n; i++)
{
if(!point_in(a[i]))
{
center=a[i];
radius=0;
for(int j=0;j<i;j++)
{
if(!point_in(a[j]))
{
circle_center(a[i],a[j],center);
radius = (a[j]-center).norm();
for(int k=0;k<j;k++)
{
if(!point_in(a[k]))
{
circle_center(a[i],a[j],center);
radius=(a[k]-center).norm();
}
}
}
}
}
}
}
int main()
{
int n;
point A[505];
while(~scanf("%d",&n) &&n!=0)
{
for(int i=0;i<n;i++)
{
scanf("%lf%lf",&A[i].x,&A[i].y);
}
min_circle_cover(A,n);
printf("%.2lf %.2lf %.2lf
",center.x,center.y,radius);
}
return 0;
}