• HDU 5306 Gorgeous Sequence[线段树区间最值操作]


    Gorgeous Sequence

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2150    Accepted Submission(s): 594


    Problem Description
    There is a sequence a of length n. We use ai to denote the i-th element in this sequence. You should do the following three types of operations to this sequence.

    0 x y t: For every xiy, we use min(ai,t) to replace the original ai's value.
    1 x y: Print the maximum value of ai that xiy.
    2 x y: Print the sum of ai that xiy.
     
    Input
    The first line of the input is a single integer T, indicating the number of testcases. 

    The first line contains two integers n and m denoting the length of the sequence and the number of operations.

    The second line contains n separated integers a1,,an (1in,0ai<231).

    Each of the following m lines represents one operation (1xyn,0t<231).

    It is guaranteed that T=100n1000000, m1000000.
     
    Output
    For every operation of type 1 or 2, print one line containing the answer to the corresponding query.
     
    Sample Input
    1 5 5 1 2 3 4 5 1 1 5 2 1 5 0 3 5 3 1 1 5 2 1 5
     
    Sample Output
    5 15 3 12
    Hint
    Please use efficient IO method
     
    Author
    XJZX
     
    Source
     

    一份代码交了13遍。从TLE->WA->TLE->……QAQ

    #include<cstdio>
    #include<iostream>
    #define lc k<<1
    #define rc k<<1|1
    #define EF if(ch==EOF) return x;
    using namespace std;
    typedef long long ll;
    inline int read(){
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;EF;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    const int N=1e6+5;
    const int M=N<<2;
    int n,m,a[N];
    ll sum[M];int mx[M],se[M],mc[M];
    inline void updata(int k){
        sum[k]=sum[lc]+sum[rc];
        mx[k]=max(mx[lc],mx[rc]);
        se[k]=max(se[lc],se[rc]);mc[k]=0;
        if(mx[lc]!=mx[rc]) se[k]=max(se[k],min(mx[lc],mx[rc]));
        if(mx[k]==mx[lc]) mc[k]+=mc[lc];
        if(mx[k]==mx[rc]) mc[k]+=mc[rc];
    }
    inline void dec_tag(int k,int v){
        if(v>=mx[k]) return ;
        sum[k]+=1LL*(v-mx[k])*mc[k];mx[k]=v;
    }
    inline void pushdown(int k){
        dec_tag(lc,mx[k]);
        dec_tag(rc,mx[k]);
    }
    void build(int k,int l,int r){
        if(l==r){
            sum[k]=mx[k]=a[l];mc[k]=1;se[k]=-1;
            return ;
        }
        int mid=l+r>>1;
        build(lc,l,mid);
        build(rc,mid+1,r);
        updata(k);
    }
    void change(int k,int l,int r,int x,int y,int v){
        if(v>=mx[k]) return ;
        if(l==x&&r==y&&v>se[k]){
            dec_tag(k,v);return ;
        }
        pushdown(k);
        int mid=l+r>>1;
        if(y<=mid) change(lc,l,mid,x,y,v);
        else if(x>mid) change(rc,mid+1,r,x,y,v);
        else change(lc,l,mid,x,mid,v),change(rc,mid+1,r,mid+1,y,v);
        updata(k);    
    }
    int query_max(int k,int l,int r,int x,int y){
        if(l==x&&r==y) return mx[k];
        pushdown(k);
        int mid=l+r>>1;
        if(y<=mid) return query_max(lc,l,mid,x,y);
        else if(x>mid) return query_max(rc,mid+1,r,x,y);
        else return max(query_max(lc,l,mid,x,mid),query_max(rc,mid+1,r,mid+1,y));
    }
    ll query_sum(int k,int l,int r,int x,int y){
        if(l==x&&r==y) return sum[k];
        pushdown(k);
        int mid=l+r>>1;
        if(y<=mid) return query_sum(lc,l,mid,x,y);
        else if(x>mid) return query_sum(rc,mid+1,r,x,y);
        else return query_sum(lc,l,mid,x,mid)+query_sum(rc,mid+1,r,mid+1,y);
    }
    inline void work(){
        n=read();m=read();
        for(int i=1;i<=n;i++) a[i]=read();
        build(1,1,n);
        for(int i=1,opt,x,y,z;i<=m;i++){
            opt=read();x=read();y=read();
            if(opt==0) z=read(),change(1,1,n,x,y,z);
            if(opt==1) printf("%d
    ",query_max(1,1,n,x,y));
            if(opt==2) printf("%lld
    ",query_sum(1,1,n,x,y));
        }
    }
    int main(){
        for(int T=read();T--;) work();
        return 0;
    }
  • 相关阅读:
    Dell FC Switch zone configuration
    RMAN参考使用手册[转载]
    CentOS下SVN简介、下载、安装
    教你制作启动U盘 用U盘装系统(转载)
    RMAN简明使用手册[转载]
    控制文件和重做日志文件(1)[转载)
    RMAN快速入门指南[转载]
    Dell服务转移
    BE Learing 8 异常及解决办法
    10g rman备份恢复案例[转载]
  • 原文地址:https://www.cnblogs.com/shenben/p/6641984.html
Copyright © 2020-2023  润新知