Gorgeous Sequence
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2150 Accepted Submission(s): 594
Problem Description
There is a sequence a of length n. We use ai to denote the i-th element in this sequence. You should do the following three types of operations to this sequence.
0 x y t: For every x≤i≤y, we use min(ai,t) to replace the original ai's value.
1 x y: Print the maximum value of ai that x≤i≤y.
2 x y: Print the sum of ai that x≤i≤y.
0 x y t: For every x≤i≤y, we use min(ai,t) to replace the original ai's value.
1 x y: Print the maximum value of ai that x≤i≤y.
2 x y: Print the sum of ai that x≤i≤y.
Input
The first line of the input is a single integer T, indicating the number of testcases.
The first line contains two integers n and m denoting the length of the sequence and the number of operations.
The second line contains n separated integers a1,…,an (∀1≤i≤n,0≤ai<231).
Each of the following m lines represents one operation (1≤x≤y≤n,0≤t<231).
It is guaranteed that T=100, ∑n≤1000000, ∑m≤1000000.
The first line contains two integers n and m denoting the length of the sequence and the number of operations.
The second line contains n separated integers a1,…,an (∀1≤i≤n,0≤ai<231).
Each of the following m lines represents one operation (1≤x≤y≤n,0≤t<231).
It is guaranteed that T=100, ∑n≤1000000, ∑m≤1000000.
Output
For every operation of type 1 or 2, print one line containing the answer to the corresponding query.
Sample Input
1
5 5
1 2 3 4 5
1 1 5
2 1 5
0 3 5 3
1 1 5
2 1 5
Sample Output
5
15
3
12
Hint
Please use efficient IO methodAuthor
XJZX
Source
一份代码交了13遍。从TLE->WA->TLE->……QAQ
#include<cstdio> #include<iostream> #define lc k<<1 #define rc k<<1|1 #define EF if(ch==EOF) return x; using namespace std; typedef long long ll; inline int read(){ int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;EF;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } const int N=1e6+5; const int M=N<<2; int n,m,a[N]; ll sum[M];int mx[M],se[M],mc[M]; inline void updata(int k){ sum[k]=sum[lc]+sum[rc]; mx[k]=max(mx[lc],mx[rc]); se[k]=max(se[lc],se[rc]);mc[k]=0; if(mx[lc]!=mx[rc]) se[k]=max(se[k],min(mx[lc],mx[rc])); if(mx[k]==mx[lc]) mc[k]+=mc[lc]; if(mx[k]==mx[rc]) mc[k]+=mc[rc]; } inline void dec_tag(int k,int v){ if(v>=mx[k]) return ; sum[k]+=1LL*(v-mx[k])*mc[k];mx[k]=v; } inline void pushdown(int k){ dec_tag(lc,mx[k]); dec_tag(rc,mx[k]); } void build(int k,int l,int r){ if(l==r){ sum[k]=mx[k]=a[l];mc[k]=1;se[k]=-1; return ; } int mid=l+r>>1; build(lc,l,mid); build(rc,mid+1,r); updata(k); } void change(int k,int l,int r,int x,int y,int v){ if(v>=mx[k]) return ; if(l==x&&r==y&&v>se[k]){ dec_tag(k,v);return ; } pushdown(k); int mid=l+r>>1; if(y<=mid) change(lc,l,mid,x,y,v); else if(x>mid) change(rc,mid+1,r,x,y,v); else change(lc,l,mid,x,mid,v),change(rc,mid+1,r,mid+1,y,v); updata(k); } int query_max(int k,int l,int r,int x,int y){ if(l==x&&r==y) return mx[k]; pushdown(k); int mid=l+r>>1; if(y<=mid) return query_max(lc,l,mid,x,y); else if(x>mid) return query_max(rc,mid+1,r,x,y); else return max(query_max(lc,l,mid,x,mid),query_max(rc,mid+1,r,mid+1,y)); } ll query_sum(int k,int l,int r,int x,int y){ if(l==x&&r==y) return sum[k]; pushdown(k); int mid=l+r>>1; if(y<=mid) return query_sum(lc,l,mid,x,y); else if(x>mid) return query_sum(rc,mid+1,r,x,y); else return query_sum(lc,l,mid,x,mid)+query_sum(rc,mid+1,r,mid+1,y); } inline void work(){ n=read();m=read(); for(int i=1;i<=n;i++) a[i]=read(); build(1,1,n); for(int i=1,opt,x,y,z;i<=m;i++){ opt=read();x=read();y=read(); if(opt==0) z=read(),change(1,1,n,x,y,z); if(opt==1) printf("%d ",query_max(1,1,n,x,y)); if(opt==2) printf("%lld ",query_sum(1,1,n,x,y)); } } int main(){ for(int T=read();T--;) work(); return 0; }