题目描述 Description
当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。
一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)
你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号
奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。
输入描述 Input Description
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
输出描述 Output Description
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
样例输入 Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
样例输出 Sample Output
27
数据范围及提示 Data Size & Hint
题解:
ml的正向建边,存正的权值
md的反向建边,存负的权值
正向跑一遍spfa最短路,判断一下dis[n],输出
AC代码:
#include<cstdio> #include<queue> using namespace std; const int N=5e5+10; struct node{ int v,w,next; }e[N<<2]; int n,ml,md,tot,head[N],in[N],dis[N]; bool vis[N]; void add(int x,int y,int z){ e[++tot].v=y; e[tot].w=z; e[tot].next=head[x]; head[x]=tot; } inline int spfa(){ for(int i=1;i<=n;i++) dis[i]=0x3f3f3f3f; dis[1]=0; vis[1]=1; in[1]=1; queue<int>q; q.push(1); while(!q.empty()){ int h=q.front();q.pop(); vis[h]=0; for(int i=head[h];i;i=e[i].next){ int v=e[i].v,w=e[i].w; if(dis[v]>dis[h]+w){ dis[v]=dis[h]+w; if(!vis[v]){ vis[v]=1; if(++in[v]==n) return -1; q.push(v); } } } } if(dis[n]==0x3f3f3f3f) return -2; return dis[n]; } int main(){ scanf("%d%d%d",&n,&ml,&md); for(int i=1,x,y,z;i<=ml;i++) scanf("%d%d%d",&x,&y,&z),add(x,y,z); for(int i=1,x,y,z;i<=md;i++) scanf("%d%d%d",&x,&y,&z),add(y,x,-z); printf("%d",spfa()); return 0; }