• Spark SQL 及其DataFrame的基本操作


    1.Spark SQL出现的 原因是什么?

    Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个叫作Data Frame的编程抽象结构数据模型(即带有Schema信息的RDD),Spark SQL作为分布式SQL查询引擎,让用户可以通过SQL、DataFrame API和Dataset API三种方式实现对结构化数据的处理。但无论是哪种API或者是编程语言,都是基于同样的执行引擎,因此可以在不同的API之间随意切换。

    Spark SQL的前身是 Shark,Shark最初是美国加州大学伯克利分校的实验室开发的Spark生态系统的组件之一,它运行在Spark系统之上,Shark重用了Hive的工作机制,并直接继承了Hive的各个组件, Shark将SQL语句的转换从MapReduce作业替换成了Spark作业,虽然这样提高了计算效率,但由于 Shark过于依赖Hive,因此在版本迭代时很难添加新的优化策略,从而限制了Spak的发展,在2014年,伯克利实验室停止了对Shark的维护,转向Spark SQL的开发。

    2.用spark.read 创建DataFrame

    Spark SQL DataFrame的基本操作

    1.创建:spark.read.text()   ;spark.read.json()

    file='file:///D:/Spark/spark-2.4.7-bin-hadoop2.7/examples/src/main/resources/people.txt'
    df = spark.read.text(file)
    file='file:///D:/Spark/spark-2.4.7-bin-hadoop2.7/examples/src/main/resources/people.json'
    df = spark.read.json(file)

     

    2.打印数据df.show()默认打印前20条数据,df.show(n)

    3.打印概要df.printSchema()

    4.查询总行数df.count()

    5.df.head(3) #list类型,list中每个元素是Row类

    6.输出全部行   df.collect() #list类型,list中每个元素是Row类

    7.查询概况    df.describe().show()

    8.取列

    df[‘name’]

    df.name

    df.select()

    df.filter()

    df.groupBy()

    df.sort()

     

    3.观察从不同类型文件创建DataFrame有什么异同?

     spark.read操作

    代码示例描述
    spark.read.text("people.txt") 读取txt格式的文本文件,创建DataFrame                                 
    spark.read.csv ("people.csv") 读取csv格式的文本文件,创建DataFrame
    spark.read.json("people.json") 读取json格式的文本文件,创建DataFrame
    spark.read.parquet("people.parquet") 读取parquet格式的文本文件,创建DataFrame

    txt文件:创建的DataFrame数据没有结构

    json文件:创建的DataFrame数据有结构

    4.观察Spark的DataFrame与Python pandas的DataFrame有什么异同

     

  • 相关阅读:
    正则表达式中的贪婪模式与非贪婪模式详解
    关于Python中正则表达式的反斜杠问题
    每日思考记录(1)
    软件设计——2018年上半年选择题重要知识点
    统一过程UP
    软件设计复习7
    软件设计复习6
    软件设计复习5
    软件设计复习4
    软件设计复习3
  • 原文地址:https://www.cnblogs.com/shawncs/p/14748644.html
Copyright © 2020-2023  润新知