Hex formats
Intel
=====
Hexadecimal values are always in uppercase. Each line is a record.
The sum of all the bytes in each record should be 00 (modulo 256).
Record types:
00: data records
01: end-of-file record
02: extended address record
Data record
-----------
:0D011C0000000000C3E0FF0000000000C30F
: 0D 011C 00 00000000C3E0FF0000000000C3 0F
| | | | -------------+------------ |
| | | | | +--- Checksum
| | | | +------------------ Data bytes
| | | +--------------------------------- Record type
| | +------------------------------------- Address
| +----------------------------------------- Number of data bytes
+-------------------------------------------- Start of record
End of file record
------------------
:00000001FE
: 00 0000 01 FE
| | | | |
| | | | +--- Checksum
| | | +------ Record type
| | +---------- Address
| +-------------- Number of data bytes
+----------------- Start of record
Extended address record
-----------------------
:02010002E0001B
: 02 0100 02 E000 1B
| | | | | |
| | | | | +--- Checksum
| | | | +-------- Segment address
| | | +----------- Record type
| | +--------------- Address
| +------------------- Number of data bytes
+---------------------- Start of record
Following data records will start at E000:0100 or E0100
(* -----------------------------------------------------------------------------
http://www.keil.com/support/docs/1584/
What is the Intel HEX file format?
The Intel HEX file is an ASCII text file with lines of text that follow
the Intel HEX file format.
Each line in an Intel HEX file contains one HEX record.
These records are made up of hexadecimal numbers that represent machine
language code and/or constant data.
Intel HEX files are often used to transfer the program and data that
would be stored in a ROM or EPROM.
Most EPROM programmers or emulators can use Intel HEX files.
------------------------------------------------------------------------------
Record Format
------------------------------------------------------------------------------
An Intel HEX file is composed of any number of HEX records.
Each record is made up of five fields that are arranged in the following format:
:llaaaatt[dd...]cc
Each group of letters corresponds to a different field,
and each letter represents a single hexadecimal digit.
Each field is composed of at least two hexadecimal digits-which
make up a byte-as described below:
------------------------------------------------------------------------------
: is the colon that starts every Intel HEX record.
------------------------------------------------------------------------------
ll is the record-length field that
represents the number of data bytes (dd) in the record.
------------------------------------------------------------------------------
aaaa is the address field that represents the starting address for
subsequent data in the record.
------------------------------------------------------------------------------
tt is the field that represents the HEX record type,
which may be one of the following:
00 - data record
01 - end-of-file record :00000001FF ( :00AB2F0125 : Jump 0xAB2F )
02 - extended segment address record :02-0000-02-FFFF-FC : 0x000FFFF0
03 - start segment address record :04-0000-03-0000-00CD-2A : CS-IP
04 - extended linear address record :02-0000-04-FFFF-FC : 0xFFFF0000
05 - start linear address record :04-0000-05-000000CD-2A : EIP
------------------------------------------------------------------------------
dd is a data field that represents one byte of data.
A record may have multiple data bytes. The number of data bytes in the record
must match the number specified by the ll field.
------------------------------------------------------------------------------
cc is the checksum field that represents the checksum of the record.
The checksum is calculated by summing the values of
all hexadecimal digit pairs in the record modulo 256
and taking the two's complement.
--------------------------------------------------------------------------------
Data Records
--------------------------------------------------------------------------------
The Intel HEX file is made up of any number of data records that are terminated
with a carriage return and a linefeed. Data records appear as follows:
:10246200464C5549442050524F46494C4500464C33
This record is decoded as follows:
: 10 2462 00 464C5549442050524F46494C4500464C 33
where:
10 is the number of data bytes in the record.
2462 is the address where the data are to be located in memory.
00 is the record type 00 (a data record).
464C...464C is the data.
33 is the checksum of the record.
------------------------------------------------------------------------------
Extended Linear Address Records (HEX386)
------------------------------------------------------------------------------
Extended linear address records are also known as 32-bit address records
and HEX386 records. These records contain the upper 16 bits (bits 16-31)
of the data address. The extended linear address record always
has two data bytes and appears as follows:
:02000004FFFFFC
where:
02 is the number of data bytes in the record.
0000 is the address field.
For the extended linear address record, this field is always 0000.
04 is the record type 04 (an extended linear address record).
FFFF is the upper 16 bits of the address.
FC is the checksum of the record and is calculated as
01h + NOT(02h + 00h + 00h + 04h + FFh + FFh).
When an extended linear address record is read,
the extended linear address stored in the data field is saved
and is applied to subsequent records read from the Intel HEX file.
The linear address remains effective until changed
by another extended address record.
The absolute-memory address of a data record is obtained
by adding the address field in the record to the shifted address data
from the extended linear address record.
The following example illustrates this process..
Address from the data record's address field 2462
Extended linear address record data field FFFF
------------------------------------------------------------------------------
Absolute-memory address FFFF2462
------------------------------------------------------------------------------
Extended Segment Address Records (HEX86)
------------------------------------------------------------------------------
Extended segment address records-also known as HEX86 records-contain bits 4-19
of the data address segment.
The extended segment address record always
has two data bytes and appears as follows:
:020000021200EA
where:
02 is the number of data bytes in the record.
0000 is the address field.
For the extended segment address record, this field is always 0000.
02 is the record type 02 (an extended segment address record).
1200 is the segment of the address.
EA is the checksum of the record and is calculated as
01h + NOT(02h + 00h + 00h + 02h + 12h + 00h).
When an extended segment address record is read,
the extended segment address stored in the data field
is saved and is applied to subsequent records read from the Intel HEX file.
The segment address remains effective until changed
by another extended address record.
The absolute-memory address of a data record is obtained
by adding the address field in the record to the shifted-address data
from the extended segment address record.
The following example illustrates this process.
Address from the data record's address field 2462
Extended segment address record data field 1200
--------
Absolute memory address 00014462
------------------------------------------------------------------------------
End-of-File (EOF) Records
------------------------------------------------------------------------------
An Intel HEX file must end with an end-of-file (EOF) record.
This record must have the value 01 in the record type field.
An EOF record always appears as follows:
:00000001FF
where:
00 is the number of data bytes in the record.
0000 is the address where the data are to be located in memory.
The address in end-of-file records is meaningless and is ignored.
An address of 0000h is typical.
01 is the record type 01 (an end-of-file record).
FF is the checksum of the record and is calculated as
01h + NOT(00h + 00h + 00h + 01h).
------------------------------------------------------------------------------
Example Intel HEX File
------------------------------------------------------------------------------
Following is an example of a complete Intel HEX file:
:10001300AC12AD13AE10AF1112002F8E0E8F0F2244
:10000300E50B250DF509E50A350CF5081200132259
:03000000020023D8
:0C002300787FE4F6D8FD7581130200031D
:10002F00EFF88DF0A4FFEDC5F0CEA42EFEEC88F016
:04003F00A42EFE22CB
:00000001FF
: 02 0000 04 2000 DA : 2000 is the upper 16 bits of address.
: 08 1264 00 0000A0E31EFF2FE1 D2 : 1264 is the lower 16 bits of address.
: 00 0000 01 FF : Enf of File
’00’ Data Record <=We use this record
’01’ End of File Record <=We use this record
’02’ Extended Segment Address Record : BaseAddr = ( SegAddr<<4 )
’03’ Start Segment Address Record : Value of the CS:IP ( >>80286 )
’04’ Extended Linear Address Record : BaseAddr = ( LinearAddr<<16 )
’05’ Start Linear Address Record : Value of the EIP ( 80386>> )
Sometimes the terms I8HEX, I16HEX, I32HEX, resp. INTEL 8/16/32 are used,
usually in the context of x86 CPUs.
The format of the files are all the same, but the terms imply using a particular
subset of the possible record types:
I8HEX uses only types 00/01 (16 bit addresses),
I16HEX adds types 02/03 (20 bit addresses), and
I32HEX adds 04/05 (32 bit addresses).
--------------------------------------------------------------------------- *)
unit uIntelHex;
interface
uses
System.SysUtils, System.Classes, Windows;
const
HEX_ERROR_MARKER = 1;
HEX_ERROR_ADDRESS = 2;
HEX_ERROR_REC_TYPE = 3;
HEX_ERROR_SECTION_SIZE = 4;
HEX_ERROR_DATA = 5;
HEX_ERROR_CHECK_SUM = 6;
HEX_ERROR_SECTION_COUNT = 7;
type
EHex2Bin = class( Exception )
private
FCode : integer;
public
constructor Create( ACode : integer );
property Code : integer read FCode write FCode;
end;
type
TXxx2Bin = procedure( TxtStringList : TStringList; BinStream : TMemoryStream;
var StartAddress : int64 );
procedure Txt2Bin( TxtStringList : TStringList; BinStream : TMemoryStream;
var StartAddress : int64 );
procedure Hex2Bin( HexStringList : TStringList; BinStream : TMemoryStream;
var StartAddress : int64 );
procedure Bin2Hex( BinStream : TMemoryStream; HexStringList : TStringList;
StartAddress : int64 );
implementation
const
ONE_RECORD_SIZE = 16;
ONE_SECTION_SIZE = 64 * 1024;
MAX_SECTION_COUNT = 16;
MAX_BUFFER_SIZE = MAX_SECTION_COUNT * ONE_SECTION_SIZE;
type
// Different possible records for Intel .hex files.
TRecType = ( rtData = 0, // data
rtEof = 1, // End Of File
rtEsa = 2, // Extended Segment Address
rtSsa = 3, // Start Segment Address
rtEla = 4, // Extended Linear Address
rtSla = 5 ); // Start Linear Address
THexRec = record
Marker : BYTE; // : Valid, other Invalid
DataSize : BYTE;
Addr : Word;
RecType : TRecType;
DataBuf : array [ 0 .. 255 ] of BYTE;
CheckSum : BYTE;
end;
THexSection = record
LinearAddress : DWORD;
UsedOffset : DWORD;
UnusedOffset : DWORD;
DataBuffer : array [ 0 .. ONE_SECTION_SIZE - 1 ] of BYTE;
end;
var
HexSections : array [ 0 .. MAX_SECTION_COUNT - 1 ] of THexSection;
Hex2BinErrorMessage : array [ HEX_ERROR_MARKER .. HEX_ERROR_SECTION_COUNT ]
of string; // error messages
constructor EHex2Bin.Create( ACode : integer );
begin
FCode := ACode;
inherited Create( Hex2BinErrorMessage[ ACode ] );
end;
// : 10 0013 00 AC12AD13AE10AF1112002F8E0E8F0F22 44
// \_________________________________________/ CS
//
// The checksum is calculated by summing the values of all hexadecimal digit
// pairs in the record modulo 256 and taking the two's complement
//
function HexCalcCheckSum( HexRec : THexRec ) : BYTE;
var
i : integer;
begin
Result := HexRec.DataSize + HexRec.Addr + ( HexRec.Addr shr 8 ) +
BYTE( HexRec.RecType );
for i := 0 to HexRec.DataSize - 1 do
Inc( Result, HexRec.DataBuf[ i ] );
// Result := -Integer(Result);
Result := ( not Result ) + 1;
end;
function HexRec2Str( HexRec : THexRec ) : string;
var
i : integer;
begin
Result := ':' + IntToHex( HexRec.DataSize, 2 ) + IntToHex( HexRec.Addr, 4 ) +
IntToHex( Ord( HexRec.RecType ), 2 );
for i := 0 to HexRec.DataSize - 1 do
Result := Result + IntToHex( HexRec.DataBuf[ i ], 2 );
Result := Result + IntToHex( HexCalcCheckSum( HexRec ), 2 );
end;
// 1 23 4567 89 ABCDEF.............................
// : 10 0013 00 AC12AD13AE10AF1112002F8E0E8F0F22 44
//
function HexStr2Rec( HexStr : string ) : THexRec;
var
i : integer;
begin
Result.Marker := Ord( HexStr[ 1 ] );
if Result.Marker <> Ord( ':' ) then
raise EHex2Bin.Create( HEX_ERROR_MARKER );
try
Result.DataSize := StrToInt( '$' + Copy( HexStr, 2, 2 ) );
Result.Addr := StrToInt( '$' + Copy( HexStr, 4, 4 ) );
Result.RecType := TRecType( StrToInt( '$' + Copy( HexStr, 8, 2 ) ) );
for i := 0 to Result.DataSize - 1 do
Result.DataBuf[ i ] := StrToInt( '$' + Copy( HexStr, 10 + i * 2, 2 ) );
Result.CheckSum :=
StrToInt( '$' + Copy( HexStr, 10 + Result.DataSize * 2, 2 ) );
except
raise EHex2Bin.Create( HEX_ERROR_DATA );
end;
if Result.CheckSum <> HexCalcCheckSum( Result ) then
raise EHex2Bin.Create( HEX_ERROR_CHECK_SUM );
end;
procedure Bin2Hex( BinStream : TMemoryStream; HexStringList : TStringList;
StartAddress : int64 );
var
HexRec : THexRec;
BufferSize : DWORD;
SectionSize : DWORD;
RecordSize : DWORD;
SectionAddr : DWORD;
LinearAddr : DWORD;
begin
SectionAddr := 0;
LinearAddr := 0;
BufferSize := BinStream.Size;
SectionSize := BufferSize;
BinStream.Seek( 0, soBeginning );
while BufferSize > 0 do
begin
// Write Linear Address
if ( StartAddress <> 0 ) or ( SectionSize = 0 ) then
begin
if ( StartAddress <> 0 ) then // first section
begin
SectionAddr := StartAddress and ( ONE_SECTION_SIZE - 1 );
SectionSize := ONE_SECTION_SIZE - SectionAddr;
LinearAddr := StartAddress shr 16;
StartAddress := 0;
end
else // if ( SectionSize = 0 ) then
begin
SectionAddr := 0;
SectionSize := BufferSize;
LinearAddr := LinearAddr + 1;
end;
HexRec.DataSize := 2;
HexRec.Addr := 0;
HexRec.RecType := rtEla;
HexRec.DataBuf[ 0 ] := LinearAddr shr 8;
HexRec.DataBuf[ 1 ] := LinearAddr and $FF;
HexStringList.Add( HexRec2Str( HexRec ) );
end
else // Write Data Record
begin
RecordSize := SectionSize;
if RecordSize > ONE_RECORD_SIZE then
RecordSize := ONE_RECORD_SIZE;
HexRec.DataSize := RecordSize;
HexRec.Addr := SectionAddr;
HexRec.RecType := rtData;
BinStream.Read( HexRec.DataBuf[ 0 ], RecordSize );
HexStringList.Add( HexRec2Str( HexRec ) );
SectionAddr := SectionAddr + RecordSize;
SectionSize := SectionSize - RecordSize;
BufferSize := BufferSize - RecordSize;
end;
end;
// Write EOF :00000001FF
HexRec.DataSize := 0;
HexRec.Addr := 0;
HexRec.RecType := rtEof;
HexStringList.Add( HexRec2Str( HexRec ) );
end;
procedure Hex2Bin( HexStringList : TStringList; BinStream : TMemoryStream;
var StartAddress : int64 );
var
i : integer;
LastAddress : int64;
HexRec : THexRec;
SectionFreeAddr : DWORD;
SectionIndex : DWORD;
SizeToWrite : DWORD;
BufferToWrite : Pointer;
LinearAddress : DWORD;
FirstLinearAddr : DWORD;
LastLinearAddr : DWORD;
FirstUsedDataOffset : DWORD; // First Section : $0000
LastUnusedDataOffset : DWORD; // Last Section : $10000
begin
for i := 0 to MAX_SECTION_COUNT - 1 do // Mark as Unused
begin
HexSections[ i ].LinearAddress := $0000;
HexSections[ i ].UnusedOffset := $0000;
HexSections[ i ].UsedOffset := ONE_SECTION_SIZE;
FillChar( HexSections[ i ].DataBuffer[ 0 ], ONE_SECTION_SIZE, $FF );
end;
SectionIndex := 0;
for i := 0 to HexStringList.Count - 1 do
begin
HexRec := HexStr2Rec( HexStringList[ i ] );
case HexRec.RecType of
rtEof :
break;
rtSsa, rtEsa, rtSla :
continue;
rtEla :
begin
LinearAddress := HexRec.DataBuf[ 0 ] * 256 + HexRec.DataBuf[ 1 ];
if HexSections[ SectionIndex ].LinearAddress <> LinearAddress then
begin
if ( i <> 0 ) then
SectionIndex := SectionIndex + 1;
if ( SectionIndex = MAX_SECTION_COUNT ) then
raise EHex2Bin.Create( HEX_ERROR_SECTION_COUNT );
HexSections[ SectionIndex ].LinearAddress := LinearAddress;
end;
end;
rtData :
begin
SectionFreeAddr := HexRec.Addr + HexRec.DataSize; // ONE_SECTION_SIZE
if SectionFreeAddr > ONE_SECTION_SIZE then
raise EHex2Bin.Create( HEX_ERROR_SECTION_SIZE );
if HexSections[ SectionIndex ].UnusedOffset < SectionFreeAddr then
HexSections[ SectionIndex ].UnusedOffset := SectionFreeAddr;
if HexSections[ SectionIndex ].UsedOffset > HexRec.Addr then
HexSections[ SectionIndex ].UsedOffset := HexRec.Addr;
CopyMemory( @HexSections[ SectionIndex ].DataBuffer[ HexRec.Addr ],
@HexRec.DataBuf[ 0 ], HexRec.DataSize );
end;
end;
end;
FirstLinearAddr := $10000;
LastLinearAddr := 0;
FirstUsedDataOffset := 0;
LastUnusedDataOffset := ONE_SECTION_SIZE;
for i := 0 to SectionIndex do
begin
if HexSections[ i ].LinearAddress > LastLinearAddr then
begin
LastLinearAddr := HexSections[ i ].LinearAddress;
LastUnusedDataOffset := HexSections[ i ].UnusedOffset;
end;
if HexSections[ i ].LinearAddress < FirstLinearAddr then
begin
FirstLinearAddr := HexSections[ i ].LinearAddress;
FirstUsedDataOffset := HexSections[ i ].UsedOffset;
end;
end;
StartAddress := DWORD( FirstLinearAddr ) shl 16;
StartAddress := StartAddress + FirstUsedDataOffset;
LastAddress := DWORD( LastLinearAddr ) shl 16;
LastAddress := LastAddress + LastUnusedDataOffset;
BinStream.Clear;
BinStream.SetSize( LastAddress - StartAddress );
// Write Every Section ( include unused sections : FF .. FF )
for i := 0 to SectionIndex do
begin
if HexSections[ i ].LinearAddress = FirstLinearAddr then
begin
SizeToWrite := ONE_SECTION_SIZE - HexSections[ i ].UsedOffset;
if SizeToWrite > BinStream.Size then
SizeToWrite := BinStream.Size;
BufferToWrite := @HexSections[ i ].DataBuffer
[ HexSections[ i ].UsedOffset ];
end
else if HexSections[ i ].LinearAddress = LastLinearAddr then
begin
SizeToWrite := HexSections[ i ].UnusedOffset;
BufferToWrite := @HexSections[ i ].DataBuffer[ 0 ];
end
else
begin
SizeToWrite := ONE_SECTION_SIZE;
BufferToWrite := @HexSections[ i ].DataBuffer[ 0 ];
end;
BinStream.Write( BufferToWrite^, SizeToWrite );
end;
end;
function HexStr2Int( HexStr : PChar; var AByte : BYTE ) : boolean;
begin
Result := FALSE;
if ( HexStr[ 0 ] = '0' ) then
if ( ( HexStr[ 1 ] = 'x' ) or ( HexStr[ 1 ] = 'X' ) ) then
Exit;
if CharInSet( HexStr[ 0 ], [ '0' .. '9', 'A' .. 'F', 'a' .. 'f' ] ) then
begin
if CharInSet( HexStr[ 1 ], [ '0' .. '9', 'A' .. 'F', 'a' .. 'f' ] ) then
begin
AByte := StrToInt( '$' + HexStr[ 0 ] + HexStr[ 1 ] );
Result := TRUE;
end;
end;
end;
procedure Txt2Bin( TxtStringList : TStringList; BinStream : TMemoryStream;
var StartAddress : int64 ); // dont care StartAddress
var
CharIndex : DWORD;
SectionIndex : DWORD;
SectionOffset : DWORD;
TextStr : string;
BinSize : DWORD;
AByte : BYTE;
SizeToWrite : DWORD;
begin
TextStr := '';
for SectionOffset := 0 to TxtStringList.Count - 1 do
TextStr := TextStr + TxtStringList[ SectionOffset ];
SectionIndex := 0;
SectionOffset := 0;
CharIndex := 1;
BinSize := 0;
while CharIndex < Length( TextStr ) do
begin
if not HexStr2Int( @TextStr[CharIndex], AByte ) then
begin
Inc( CharIndex, 1 );
continue;
end;
HexSections[ SectionIndex ].DataBuffer[ SectionOffset ] := AByte;
Inc( BinSize, 1 );
Inc( SectionOffset, 1 );
if SectionOffset = ONE_SECTION_SIZE then
Inc( SectionIndex, 1 );
if SectionIndex = MAX_SECTION_COUNT then
break;
Inc( CharIndex, 2 );
end;
BinStream.SetSize( BinSize );
while BinSize > 0 do
begin
SizeToWrite := BinSize;
if SizeToWrite > ONE_SECTION_SIZE then
SizeToWrite := ONE_SECTION_SIZE;
BinStream.Write( HexSections[ SectionIndex ].DataBuffer[ 0 ], SizeToWrite );
Inc( SectionIndex );
BinSize := BinSize - SizeToWrite;
end;
end;
initialization
Hex2BinErrorMessage[ HEX_ERROR_MARKER ] := 'Error Marker';
Hex2BinErrorMessage[ HEX_ERROR_ADDRESS ] := 'Error Address';
Hex2BinErrorMessage[ HEX_ERROR_REC_TYPE ] := 'Error Type';
Hex2BinErrorMessage[ HEX_ERROR_SECTION_SIZE ] := 'Error Section Size';
Hex2BinErrorMessage[ HEX_ERROR_DATA ] := 'Error Data';
Hex2BinErrorMessage[ HEX_ERROR_CHECK_SUM ] := 'Error CheckSum';
Hex2BinErrorMessage[ HEX_ERROR_SECTION_COUNT ] := 'Error Section Count';
end.