• uoj #139


    树链剖分//模板题
    由于存在换根操作
    对所有关于节点 u 的修改和查询操作进行分类讨论
    若 Root 在 u 的子树中,则不处理 u 所在的 Root 的那颗子树
    否则不会有影响
    寻找 Root 所在的那颗子树的根可以用倍增求

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <string>
    
    const int N = 1e5 + 10;
    
    #define LL long long
    
    int topp[N], fa[N], size[N], son[N], deep[N], tree[N], lst[N], rst[N], bef[N], data[N];
    int f[N][30];
    int Tree;
    LL W[N << 2], F[N << 2], S[N << 2];
    struct Node {
        int u, v, nxt;
    } G[N << 1];
    int now, head[N];
    int n, m, Root;
    
    int opt, T;
    
    #define gc getchar()
    
    inline int read() {
        int x = 0; char c = gc;
        while(c < '0' || c > '9') c = gc;
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
        return x;
    }
    
    void Add(int u, int v) {G[++ now].v = v; G[now].nxt = head[u]; head[u] = now;}
    
    void Dfs_1(int u, int f_, int dep) {
        fa[u] = f_, deep[u] = dep, size[u] = 1;
        for(int i = head[u]; ~ i; i = G[i].nxt) {
            int v = G[i].v;
            if(v == f_) continue;
            f[v][0] = u;
            Dfs_1(v, u, dep + 1);
            size[u] += size[v];
            if(size[son[u]] < size[v]) son[u] = v;
        }
    }
    
    void Dfs_2(int u, int tp) {
        topp[u] = tp, tree[u] = ++ Tree, bef[Tree] = u, lst[u] = Tree;
        if(!son[u]) {
            rst[u] = Tree; return ;
        }
        Dfs_2(son[u], tp);
        for(int i = head[u]; ~ i; i = G[i].nxt) {
            int v = G[i].v;
            if(v != fa[u] && v != son[u]) Dfs_2(v, v);
        }
        rst[u] = Tree;
    }
    
    void Before() {
        for(int i = 1; (1 << i) <= n; i ++)
            for(int j = 1; j <= n; j ++)
                if(f[j][i - 1]) f[j][i] = f[f[j][i - 1]][i - 1];
    }
    
    #define lson jd << 1
    #define rson jd << 1 | 1
    
    void Build_tree(int l, int r, int jd) {
        S[jd] = (r - l + 1);
        if(l == r) {
            W[jd] = data[bef[l]];
            return ;
        }
        int mid = (l + r) >> 1;
        Build_tree(l, mid, lson);
        Build_tree(mid + 1, r, rson);
        W[jd] = W[lson] + W[rson];
    }
    
    void Pushdown(int jd) {
        if(!F[jd]) return ;
        F[lson] += F[jd];
        F[rson] += F[jd];
        W[lson] += (S[lson] * F[jd]);
        W[rson] += (S[rson] * F[jd]);
        F[jd] = 0;
    } 
    
    void Sec_G(int l, int r, int jd, int x, int y, int num) {
        if(x <= l && r <= y) {
            F[jd] += num;
            W[jd] += (S[jd] * num);
            return ;
        }
        Pushdown(jd);
        int mid = (l + r) >> 1;
        if(x <= mid) Sec_G(l, mid, lson, x, y, num);
        if(y >  mid) Sec_G(mid + 1, r, rson, x, y, num);
        W[jd] = W[lson] + W[rson];
    }
    
    void Sec_G_imp(int x, int y, int num) {
        int tpx = topp[x], tpy = topp[y];
        while(tpx != tpy) {
            if(deep[tpx] < deep[tpy]) std:: swap(tpx, tpy), std:: swap(x, y);
            Sec_G(1, n, 1, tree[tpx], tree[x], num);
            x = fa[tpx];
            tpx = topp[x];
        }
        if(deep[x] < deep[y]) std:: swap(x, y);
        Sec_G(1, n, 1, tree[y], tree[x], num);
        return ;
    }
    
    inline int Find(int x, int y) {
        int dy = deep[y], dx = deep[x];
        int del = deep[y] - deep[x] - 1;
        for(int i = 0; (1 << i) <= del; i ++)
            if(del & (1 << i)) y = f[y][i];
        return y;
    }
    
    LL Answer;
    
    void Sec_A(int l, int r, int jd, int x, int y) {
        if(x <= l && r <= y) {
            Answer += W[jd];
            return ;
        }
        Pushdown(jd);
        int mid = (l + r) >> 1;
        if(x <= mid) Sec_A(l, mid, lson, x, y);
        if(y > mid)  Sec_A(mid + 1, r, rson, x, y);
    }
    
    LL Sec_A_imp(int x, int y) {
        int tpx = topp[x], tpy = topp[y];
        LL ret = 0;
        while(tpx != tpy) {
            if(deep[tpx] < deep[tpy]) std:: swap(tpx, tpy), std:: swap(x, y);
            Answer = 0;
            Sec_A(1, n, 1, tree[tpx], tree[x]);
            ret += Answer;
            x = fa[tpx];
            tpx = topp[x];
        }
        if(deep[x] < deep[y]) std:: swap(x, y);
        Answer = 0;
        Sec_A(1, n, 1, tree[y], tree[x]);
        ret += Answer;
        return ret;
    }
    
    int main() {
        Root = 1;
        n = read();
        for(int i = 1; i <= n; i ++) head[i] = -1;
        for(int i = 1; i <= n; i ++) data[i] = read();
        for(int i = 1; i < n; i ++) {
            int u = read();
            Add(i + 1, u), Add(u, i + 1);
        }
        Dfs_1(1, 0, 1);
        Dfs_2(1, 1);
        Build_tree(1, n, 1);
        Before();
        int t = read();
        for(T = 1; T <= t; T ++) {
            opt = read();
            if(opt == 1) Root = read();
            else if(opt == 2) {
                int u = read(), v = read(), x = read();
                Sec_G_imp(u, v, x);
            } else if(opt == 3) {
                int u = read(), x = read();
                if(Root == u) {
                    Sec_G(1, n, 1, 1, n, x);
                    continue;
                }
                if(lst[u] <= tree[Root] && tree[Root] <= rst[u]) {
                    Sec_G(1, n, 1, 1, n, x);
                    int Use_son = Find(u, Root);
                    Sec_G(1, n, 1, lst[Use_son], rst[Use_son], -x);
                } else Sec_G(1, n, 1, lst[u], rst[u], x);
            } else if(opt == 4) {
                int x = read(), y = read();
                printf("%lld
    ", Sec_A_imp(x, y));
            } else {
                int u = read();
                if(Root == u) {
                    Answer = 0;
                    Sec_A(1, n, 1, 1, n);
                    printf("%lld
    ", Answer);
                    continue;
                }
                LL Now_ans = 0;
                if(lst[u] <= tree[Root] && tree[Root] <= rst[u]) {
                    Answer = 0;
                    Sec_A(1, n, 1, 1, n);
                    Now_ans += Answer;
                    int Use_son = Find(u, Root);
                    Answer = 0;
                    Sec_A(1, n, 1, lst[Use_son], rst[Use_son]);
                    Now_ans -= Answer;
                } else {
                    Answer = 0;
                    Sec_A(1, n, 1, lst[u], rst[u]);
                    Now_ans += Answer;
                }
                printf("%lld
    ", Now_ans);
            }
        }
        return 0;
    }
  • 相关阅读:
    Centos下 安装和测试kafka
    Java枚举
    Java 数组
    Java变量
    Java标识符
    Java修饰符
    java 基本语法
    Java 基础语法
    Java开发工具
    JAVA 发展历史
  • 原文地址:https://www.cnblogs.com/shandongs1/p/9544498.html
Copyright © 2020-2023  润新知