Given an undirected graph
, return true
if and only if it is bipartite.
Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i]
is a list of indexes j
for which the edge between nodes i
and j
exists. Each node is an integer between 0
and graph.length - 1
. There are no self edges or parallel edges: graph[i]
does not contain i
, and it doesn't contain any element twice.
Example 1: Input: [[1,3], [0,2], [1,3], [0,2]] Output: true Explanation: The graph looks like this: 0----1 | | | | 3----2 We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2: Input: [[1,2,3], [0,2], [0,1,3], [0,2]] Output: false Explanation: The graph looks like this: 0----1 | | | | 3----2 We cannot find a way to divide the set of nodes into two independent subsets.
说明:1、输入数组中的graph[i],表示顶点i所有相邻的顶点,比如对于例子1来说,顶点0和顶点1,3相连,顶点1和顶点0,2相连,顶点2和结点1,3相连,顶点3和顶点0,2相连。
方法一:bfs
class Solution { public static boolean isBipartite(int[][] graph) { if(graph.length<=1) return true; int color[]=new int[graph.length]; for(int i=0;i<graph.length;i++){ if(color[i]==0){ color[i]=1; Queue<Integer> queue=new LinkedList<Integer>(); queue.offer(i); while(queue.size()>0){ int t1=queue.poll(); for(int j=0;j<graph[t1].length;j++){ int t2=graph[t1][j]; if(color[t2]==0){ color[t2]=color[t1]==1?2:1; queue.offer(t2); } else{ if(color[t1]==color[t2]) return false; } } } } } return true; } }
方法二:dfs
class Solution { private boolean flag=true; public boolean isBipartite(int[][] graph) { if(graph.length<=1) return true; int [] color=new int[graph.length]; for(int i=0;i<graph.length;i++){ if(color[i]==0){ color[i]=1; dfs(i,graph,color); if(!flag){ return flag; } } } return true; } void dfs(int pos,int[][] graph,int[] color){ for(int j=0;j<graph[pos].length;j++){ int k=graph[pos][j]; if(color[k]==0){ color[k]=color[pos]==1?2:1; dfs(k,graph,color); }else{ if(color[k]==color[pos]){ flag=false; return; } } } } }