• 小波变换补充知识


    1.信号分解及完备性

    设是X由一组向量所张成,即:
    如果线性独立,我们则称它们为空间中的一组基”。
    那么信号x可以离散表示如下:
    是一组两两互相正交的向量,展式称为x的正交展开。分解系数是在各个基向量上的投影。
    设向量和向量满足如下双正交关系:
    那么,我们对原始信号就行投影变换(內积):
    看看,我们把最关心的分解系数给弄出来了!现在的问题是与原始基双正交的向量怎么求?

    1.1 信号分解、对偶基(倒数基)、正交基

    关于信号的分解表示,我们可以从连续时间和离散时间分开分析:
    对于连续时间信号:
    对于离散时间信号:
    以上两式称为信号的变换。“变换”的结果即是求出一组系数。 
    称为的“对偶基”,或“倒数基”。
    双正交关系指的是两组基之间各对应向量之间具有正交性,但每一组向量之间并不一定具有正交关系。
    N 维空间中的正交基:
    如果一组基向量的对偶向量即是其自身,也那么这一组基向量构成了N 维空间中的正交基。

    1.2 完备性/标架

    若X空间中的任一元素x都可由一组向量作式 :
    的分解,那么我们称这一组向量是“完备(complete)”的。
    如果是完备的,且是线性相关的,那么,由表示x必然会存在信息的冗余,并且其对偶向量将 不会是唯一的。这时,我们称构成空间的一个“标架(frame)”。
     
    是完备的,且是线性无关的,则是X中的一组基向量,这时,存在且唯一,即存在
    的双正交关系。则对偶及存在,且是唯一的。
    对于正交关系,那么他的对偶基就是自己本身。

    1.3 详细证明

    将对偶基向量,用基向量表示:
    将基向量与对偶基进行內积计算:
     
    令:
        
    这样,我们可以得到如下公式:
    这样我们就可以通过基向量,求得他的对偶基向量。

    2.思考

    2.1为什么信号分解系数线性相关情况下,对偶基不唯一?

    基向量现象相关,导致B矩阵是奇异矩阵,那么得到的“对偶基向量”必定不唯一。

    2.2为什么信号分解系数双正交情况下,对偶基唯一?

    单位阵I,那么此时的B是固定的唯一的,就是基向量的逆。

    2.3为什么信号分解系数正交情况下,对偶基就是本身?

    正交情况下,矩阵的逆就是矩阵的转置,那么就是自己本身,如此简单的运算,也正是正交变换在硬件领域很受欢迎的原因。因为对矩阵求转置的复杂度要远远低于逆运算。

    2.4分解系数可以通过对偶基向量和原始信号的內积求得,这有什么物理意义?

    通过上面公式,我们可以通过物理角度进行思考。所谓的投影运算也可以看成是相似性衡量问题。如果对偶基向量与原始信号越相似,分解系数应该越大!
     
    原文见:http://m.blog.csdn.net/shenziheng1/article/details/60610724
  • 相关阅读:
    python+django+uwsgi 搭建环境
    python系列-3 pyenv的使用
    生产消费者队列(TaskCompletionSource)的应用
    socket
    Redis 参考
    webform调用windows服务
    文件编码格式获取
    webform版部分视图与请求拦截
    asp.net 自定义节配置 (configSections下的section)
    组合配置草稿
  • 原文地址:https://www.cnblogs.com/sggggr/p/11872377.html
Copyright © 2020-2023  润新知