• 12.朴素贝叶斯-垃圾邮件分类


    1. 读邮件数据集文件,提取邮件本身与标签。

    列表

    numpy数组

    import csv
    sms = open('D:/education/SMSSpamCollection.txt', 'r', encoding='utf-8')
    data = csv.reader(sms, delimiter='	')
    for i in data:
        print(i)
    sms.close()

    2.邮件预处理

    1. 邮件分句
    2. 句子分词
    3. 大小写,标点符号,去掉过短的单词
    4. 词性还原:复数、时态、比较级
    5. 连接成字符串

    2.1 传统方法来实现

    2.2 nltk库的安装与使用

    pip install nltk

    import nltk

    nltk.download()     # sever地址改成 http://www.nltk.org/nltk_data/

    https://github.com/nltk/nltk_data下载gh-pages分支,里面的Packages就是我们要的资源。

    将Packages文件夹改名为nltk_data。

    网盘链接:https://pan.baidu.com/s/1iJGCrz4fW3uYpuquB5jbew    提取码:o5ea

    放在用户目录。

    ----------------------------------

    安装完成,通过下述命令可查看nltk版本:

    import nltk

    print nltk.__doc__

     

     

    2.1 nltk库 分词

    nltk.sent_tokenize(text) #对文本按照句子进行分割

    nltk.word_tokenize(sent) #对句子进行分词

    2.2 punkt 停用词

    from nltk.corpus import stopwords

    stops=stopwords.words('english')

    *如果提示需要下载punkt

    nltk.download(‘punkt’)

    或 下载punkt.zip

    https://pan.baidu.com/s/1OwLB0O8fBWkdLx8VJ-9uNQ  密码:mema

    复制到对应的失败的目录C:UsersAdministratorAppDataRoaming ltk_data okenizers并解压。

    2.3 NLTK 词性标注

    nltk.pos_tag(tokens)

    2.4 Lemmatisation(词性还原)

    from nltk.stem import WordNetLemmatizer

    lemmatizer = WordNetLemmatizer()

    lemmatizer.lemmatize('leaves') #缺省名词

    lemmatizer.lemmatize('best',pos='a')

    lemmatizer.lemmatize('made',pos='v')

    一般先要分词、词性标注,再按词性做词性还原。

    2.5 编写预处理函数

    def preprocessing(text):

    sms_data.append(preprocessing(line[1])) #对每封邮件做预处理

    3. 训练集与测试集

    4. 词向量

    5. 模型

    import nltk
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    import csv
    
    def preprocessing(text):
        tokens = [];
        for sent in nltk.sent_tokenize(text):  #对录入的文本按照句子进行分割
            for word in nltk.word_tokenize(sent):  # 对每个句子进行
                tokens.append(word)             #对每个分词放到列表里面
        #去掉停用词
            stops = stopwords.words("english")
        tokens = [token for token in tokens if token not in stops]
    
        #词性标注
        nltk.pos_tag(tokens)
    
        #词性还原
        lemmatizer = WordNetLemmatizer()     #定义还原对象
        tokens = [lemmatizer.lemmatize(token, pos='n') for token in tokens]   #还原名词
        tokens = [lemmatizer.lemmatize(token, pos='v') for token in tokens]   #还原动词
        tokens = [lemmatizer.lemmatize(token, pos='a') for token in tokens]   #还原形容词
    
        return tokens  #返回结果
    
    
    sms = open('D:/education/SMSSpamCollection.txt', 'r', encoding='utf-8') #读取数据集
    sms_data = []   #提取邮件内容
    sms_label = []  #提取邮件标签
    csv_reader = csv.reader(sms,delimiter="	")
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(preprocessing(line[1]))   #对每封邮件做预处理
    sms.close()
    
    print("标题是:",sms_label)
    print("内容是:")
    for i in sms_data:
        print(i)

  • 相关阅读:
    android 21 隐式意图启动系统预定义activity
    android 20 Intnet类重要的成员变量
    android 19 activity纵横屏切换的数据保存与恢复
    android 18 Bundle类
    android 17 activity生命周期
    Centos6.4建立本地yum源
    eclipse实现批量修改文件的编码方式
    [系统资源]/proc/meminfo和free输出解释
    监控WebLogic 8.x的解决方案(监控应用服务器系列文章)
    linux网络监控脚本
  • 原文地址:https://www.cnblogs.com/sgczw/p/13060726.html
Copyright © 2020-2023  润新知