题目如下:
Given
n
orders, each order consist in pickup and delivery services.Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 1 Output: 1 Explanation: Unique order (P1, D1), Delivery 1 always is after of Pickup 1.Example 2:
Input: n = 2 Output: 6 Explanation: All possible orders: (P1,P2,D1,D2), (P1,P2,D2,D1), (P1,D1,P2,D2), (P2,P1,D1,D2), (P2,P1,D2,D1) and (P2,D2,P1,D1). This is an invalid order (P1,D2,P2,D1) because Pickup 2 is after of Delivery 2.Example 3:
Input: n = 3 Output: 90Constraints:
1 <= n <= 500
解题思路:记dp[i]为i个订单时可以组成的配送顺序的总数。当有i+1个订单的,对于最后一个配送的订单,一共有i+1种可能,因为任何一个订单都可以最后配送。而第i+1个订单的收取则有 (2*i-1)种可能。确定了最后一个收取以及配送的订单的后, 剩下的问题就转换成i个订单的收取和配送了,所以有 dp[i+1] = dp[i] * i * (2*i-1)。
代码如下:
class Solution(object): def countOrders(self, n): """ :type n: int :rtype: int """ dp = [0] * (n+1) dp[1] = 1 for i in range(2,n+1): dp[i] = i * (2*i-1) * dp[i-1] return dp[-1] % (10 ** 9 + 7)