• 【leetcode】877. Stone Game


    题目如下:

    Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

    The objective of the game is to end with the most stones.  The total number of stones is odd, so there are no ties.

    Alex and Lee take turns, with Alex starting first.  Each turn, a player takes the entire pile of stones from either the beginning or the end of the row.  This continues until there are no more piles left, at which point the person with the most stones wins.

    Assuming Alex and Lee play optimally, return True if and only if Alex wins the game.

    Example 1:

    Input: [5,3,4,5]
    Output: true
    Explanation: 
    Alex starts first, and can only take the first 5 or the last 5.
    Say he takes the first 5, so that the row becomes [3, 4, 5].
    If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
    If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
    This demonstrated that taking the first 5 was a winning move for Alex, so we return true.
    

    Note:

    1. 2 <= piles.length <= 500
    2. piles.length is even.
    3. 1 <= piles[i] <= 500
    4. sum(piles) is odd.

    解题思路:这类博弈问题是我的弱项,本题我参考了很多高手的答案才得到动态规划的状态转移方程。记dp[i][j]为piles[i][j]区间内先手可以赢后手的点数,假设当前dp[i][j]是Alex先手,所有Alex可以选择的石头是piles[i]或者piles[j],如果Alex选择是piles[i],那么区间piles[i+1][j]就对应Lee的先手,dp[i+1][j] 对应着Lee赢Alex的点数;当然如果Alex选择的是piles[j],其实也是一样的,只不过下一手变成piles[i][j+1]。综合这两种情况,可以得出 dp[i][j] = max(piles[i] - dp[i+1][j] , piles[j] - dp[i][j-1]) 。

    代码如下:

    class Solution(object):
        def stoneGame(self, piles):
            """
            :type piles: List[int]
            :rtype: bool
            """
            dp = []
            for i in range(len(piles)):
                dp.append([0] * len(piles))
                dp[i][i] = piles[i]
    
            # 这里的计算逻辑是j为inx,i为每一段石头的个数
            for i in range(1,len(dp)):
                for j in range(len(dp) - i):
                    dp[j][j+i] = max(piles[j] - dp[j+1][j+i], piles[j+i] - dp[j][j+i-1])
            return dp[0][-1] > 0
  • 相关阅读:
    性能监控(5)–JAVA下的jstat命令
    内存分析工具-MAT(Memory Analyzer Tool)
    性能监控(4)–linux下的pidstat命令
    性能监控(3)–linux下的iostat命令
    性能监控(2)–linux下的vmstat命令
    性能监控(1)--linux下的top命令
    了解java虚拟机—在TALB上分配对象(10)
    了解java虚拟机—G1回收器(9)
    js 长按鼠标左键实现溢出内容左右滚动滚动
    html标签设置contenteditable时,去除粘贴文本自带样式
  • 原文地址:https://www.cnblogs.com/seyjs/p/10938804.html
Copyright © 2020-2023  润新知