• 从头学pytorch(十八):GoogLeNet


    GoogLeNet

    GoogLeNet和vgg分别是2014的ImageNet挑战赛的冠亚军.GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNet参数又是AlexNet的3倍,因此在内存或计算资源有限时,GoogleNet是比较好的选择;从模型结果来看,GoogLeNet的性能却更加优越。

    之前转过一篇文章,详细描述了GoogLeNet的演化,有兴趣的可以去看看:https://www.cnblogs.com/sdu20112013/p/11308388.html

    基本结构Inception

    GoogleNet的基础结构叫Inception.如下所示:

    这个结构的好处主要是:

    • 增加了网络宽度(增加了每一层的神卷积核的数量),提高了模型学习的能力.
    • 使用了不同大小的卷积核,增加了对不同模式的特征的提取能力.也增强了模型对不同尺度的适应性.
      Inception中3x3和5x5之前的1x1主要用于降低channel维度数量,减少计算量.

    这个结构中的每一个通路的卷积核的数量是超参数,可调的.
    那么,我们定义inception结构

    class Inception(nn.Module):
        def __init__(self,in_c,c1,c2,c3,c4):
            super(Inception, self).__init__()
            self.branch1 = nn.Conv2d(in_c,c1,kernel_size=1)
            
            self.branch2_1 = nn.Conv2d(in_c,c2[0],kernel_size=1)
            self.branch2_2 = nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
    
            self.branch3_1 = nn.Conv2d(in_c,c3[0],kernel_size=1)
            self.branch3_2 = nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
    
            self.branch4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
            self.branch4_2 = nn.Conv2d(in_c,c4,kernel_size=1)
    
        def forward(self,x):
            o1 = self.branch1(x)
            o1 = F.relu(o1)
            print("o1:",o1.shape)
            
            o2 = self.branch2_1(x)
            o2 = F.relu(o2)
            o2 = self.branch2_2(o2)
            o2 = F.relu(o2)
            print("o2:",o2.shape)
    
            o3 = self.branch3_1(x)
            o3 = F.relu(o3)
            o3 = self.branch3_2(o3)
            o3 = F.relu(o3)
            print("o3:",o3.shape)
    
            o4 = self.branch4_1(x)
            o4 = self.branch4_2(o4)
            o4 = F.relu(o4)
            print("o4:",o4.shape)
    
            concat = torch.cat((o1,o2,o3,o4),dim=1)
            print("concat:",concat.shape)
    
            return concat
    

    如前所示,inception分为4个分支.每个分支的卷积核的数量是可调的参数.

    GoogLeNet完整结构

    我们根据论文里的结构来实现GoogleNet.

    上图里的红圈处代表的即3x3或5x5卷积之前的用于降维的1x1卷积.

    第一层是普通卷积,64组卷积核,卷积核大小7x7,stride=2.池化层窗口大小为3x3,stride=2.
    第二层是先做1x1卷积,再做3x3卷积.

    可写出以下代码:

    X = torch.randn((1,1,224,224))
    conv1 = nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3)
    max_pool1 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
    o=conv1(X)
    print(o.shape) #[1,64,112,112]
    o=max_pool1(o)
    print(o.shape) #[1,64,56,56]
    
    conv2_1 = nn.Conv2d(64,64,kernel_size=1)
    conv2_2 = nn.Conv2d(64,192,kernel_size=3,stride=1,padding=1)
    max_pool2 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
    o=conv2_1(o)
    print(o.shape) #[1,64,56,56]
    o=conv2_2(o)
    print(o.shape) #[1,192,56,56]
    o=max_pool2(o)
    print(o.shape) #[1,192,28,28]
    

    接下来是第一个inception结构.

    inception_3a = Inception(192,64,(96,128),(16,32),32)
    o=inception_3a(o)
    print(o.shape)
    

    输出

    o1: torch.Size([1, 64, 28, 28])
    o2: torch.Size([1, 128, 28, 28])
    o3: torch.Size([1, 32, 28, 28])
    o4: torch.Size([1, 32, 28, 28])
    concat: torch.Size([1, 256, 28, 28])
    torch.Size([1, 256, 28, 28])
    

    依次类推,最终我们可以给出模型定义:

    class GoogLeNet(nn.Module):
        def __init__(self):
            super(GoogLeNet,self).__init__()
            self.conv1 = nn.Sequential(
                nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=1),
            )
    
            self.conv2 = nn.Sequential(
                nn.Conv2d(64,64,kernel_size=1),
                nn.ReLU(),
                nn.Conv2d(64,192,kernel_size=3,padding=1),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=1),
            )
    
            self.inception_3a = Inception(192,64,(96,128),(16,32),32)
            self.inception_3b = Inception(256,128,(128,192),(32,96),64)
            self.max_pool3 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
    
            self.inception_4a = Inception(480,192,(96,208),(16,48),64)
            self.inception_4b = Inception(512,160,(112,224),(24,64),64)
            self.inception_4c = Inception(512,128,(128,256),(24,64),64)
            self.inception_4d = Inception(512,112,(144,288),(32,64),64)
            self.inception_4e = Inception(528,256,(160,320),(32,128),128)
            self.max_pool4 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
    
            self.inception_5a = Inception(832,256,(160,320),(32,128),128)
            self.inception_5b = Inception(832,384,(192,384),(48,128),128)
            
            self.avg_pool = nn.AvgPool2d(kernel_size=7)
            self.dropout = nn.Dropout(p=0.4)
    
            self.fc = nn.Linear(1024,10,bias=True)
    
        def forward(self,x):
            feature = self.conv1(x)
            feature = self.conv2(feature)
            
            feature = self.inception_3a(feature)
            feature = self.inception_3b(feature)
            feature = self.max_pool3(feature)
            
            feature = self.inception_4a(feature)
            feature = self.inception_4b(feature)
            feature = self.inception_4c(feature)
            feature = self.inception_4d(feature)
            feature = self.inception_4e(feature)
            feature = self.max_pool4(feature)
    
            feature = self.inception_5a(feature)
            feature = self.inception_5b(feature)
    
            feature = self.avg_pool(feature)
            feature = self.dropout(feature)
    
            out = self.fc(feature.view(x.shape[0],-1))
    
            return out
    

    测试一下输出

    X=torch.randn((1,1,224,224))
    net = GoogLeNet()
    # for name,module in net.named_children():
    #     X=module(X)
    #     print(name,X.shape) 
    
    out = net(X)
    print(out.shape)
    

    输出

    torch.Size([1, 10])
    

    上面的代码只是看起来复杂,其实对着前面图里描述的GoogleNet结构实现起来并不难.比如先写出

    class GoogLeNet(nn.Module):
        def __init__(self):
            super(GoogLeNet,self).__init__()
            self.conv1 = nn.Sequential(
                nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=1),
            )
    

    然后用

    X=torch.randn((1,1,224,224))
    net = GoogLeNet()
    for name,module in net.named_children():
        X=module(X)
        print(name,X.shape) 
    

    测试一下输出,如果不对,就调整代码,看看是kernel_size,padding还是哪里写错了.如果正确就继续扩展代码为

    class GoogLeNet(nn.Module):
        def __init__(self):
            super(GoogLeNet,self).__init__()
            self.conv1 = nn.Sequential(
                nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=1),
            )
    
            self.conv2 = nn.Sequential(
                nn.Conv2d(64,64,kernel_size=1),
                nn.ReLU(),
                nn.Conv2d(64,192,kernel_size=3,padding=1),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=1),
            )
    

    再次测试输出的shape,如此,一层层layer添加下去,最终就可以完成整个模型的定义.

    加载数据

    batch_size,num_workers=16,4
    train_iter,test_iter = learntorch_utils.load_data(batch_size,num_workers,resize=224)
    

    定义模型

    net = GoogLeNet().cuda()
    print(net)
    

    定义损失函数

    loss = nn.CrossEntropyLoss()
    

    定义优化器

    opt = torch.optim.Adam(net.parameters(),lr=0.001)
    

    定义评估函数

    def test():
        start = time.time()
        acc_sum = 0
        batch = 0
        for X,y in test_iter:
            X,y = X.cuda(),y.cuda()
            y_hat = net(X)
            acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item()
            batch += 1
        #print('acc_sum %d,batch %d' % (acc_sum,batch))
        
        acc = 1.0*acc_sum/(batch*batch_size)
        end = time.time()
        print('acc %3f,test for test dataset:time %d' % (acc,end - start))
    
        return acc
    

    训练

    num_epochs = 3
    save_to_disk = False
    def train():
        for epoch in range(num_epochs):
            train_l_sum,batch,acc_sum = 0,0,0
            start = time.time()
            for X,y in train_iter:
                # start_batch_begin = time.time()
                X,y = X.cuda(),y.cuda()
                y_hat = net(X)
                acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item()
    
                l = loss(y_hat,y)
                opt.zero_grad()
                l.backward()
    
                opt.step()
                train_l_sum += l.item()
    
                batch += 1
    
                mean_loss = train_l_sum/(batch*batch_size) #计算平均到每张图片的loss
                start_batch_end = time.time()
                time_batch = start_batch_end - start
    
                train_acc = acc_sum/(batch*batch_size) 
                if batch % 100 == 0:
                    print('epoch %d,batch %d,train_loss %.3f,train_acc:%.3f,time %.3f' % 
                        (epoch,batch,mean_loss,train_acc,time_batch))
    
                if save_to_disk and batch % 1000 == 0:
                    model_state = net.state_dict()
                    model_name = 'nin_epoch_%d_batch_%d_acc_%.2f.pt' % (epoch,batch,train_acc)
                    torch.save(model_state,model_name)
    
            print('***************************************')
            mean_loss = train_l_sum/(batch*batch_size) #计算平均到每张图片的loss
            train_acc = acc_sum/(batch*batch_size)     #计算训练准确率
            test_acc = test()                           #计算测试准确率
            end = time.time()
            time_per_epoch =  end - start
            print('epoch %d,train_loss %f,train_acc %f,test_acc %f,time %f' % 
                    (epoch + 1,mean_loss,train_acc,test_acc,time_per_epoch))
    
    train()
    

    实验发现googlenet收敛比较慢.可能和全连接层用全局平均池化取代有关.因为用全局平均池化的话,相当于在全局平均池化之前,提取到的特征就是有高级语义的了,每一个feature map就代表了一个类别,所以前面负责特征提取的卷积部分就需要提取出更高级的特征.所以收敛会变慢.

    完整代码

  • 相关阅读:
    spring,hibernate,spring框架整合
    python3安装pwntools
    分享一批大佬博客及学习网站
    jarvisoj--FindKeyWP
    pwntools的安装
    LibcSearcher 安装
    xctf pwn(新手练习)level3
    ret2libc3两种利用方法
    pwn函数调用
    Python知识点
  • 原文地址:https://www.cnblogs.com/sdu20112013/p/12196267.html
Copyright © 2020-2023  润新知