• BZOJ 3509: [CodeChef] COUNTARI(fft+分块)


    题面

    Description

    给定一个长度为N的数组A[],求有多少对i, j, k(1<=i<j<k<=N)满足A[k]-A[j]=A[j]-A[i]。
    Input

    第一行一个整数N(N<=10^5)。
    接下来一行N个数A[i](A[i]<=30000)。
    Output

    一行一个整数。
    Sample Input
    10

    3 5 3 6 3 4 10 4 5 2

    Sample Output
    9

    解题思路

      比较有意思的一道题。首先直接的思路就是对于一个点来说,把它两边卷起来算贡献,但这样复杂度是(O(n^2logn))的,无法接受。考虑分块,我们其实可以把原序列分块,然后每次(fft)块两边,这样算出来的贡献块内都可以用。对于块内的贡献可以直接暴力预处理出,预处理就是用两个数组,一个表示左边一个表示右边,然后先枚举块,再枚举两重块内元素。设块的大小为(T),那么就有(n/T)块,时间复杂度为(O(n*T+dfrac{n}{T}*sqrt{n*logn})),然后两边平衡一下发现(T)(sqrt{nlogn})时最优。

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    
    using namespace std;
    const int MAXN = 100005;
    const double Pi = acos(-1);
    typedef long long LL;
    
    inline int rd(){
    	int x=0,f=1;char ch=getchar();
    	while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
    	while(isdigit(ch))  {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    	return f?x:-x;
    }
    
    int n,a[MAXN],bl[MAXN],l[MAXN],r[MAXN];
    int siz,num,rev[MAXN<<2],limit=1,mx;
    int L[30005],R[30005];
    LL ans;
    struct Complex{
    	double x,y;
    	Complex(double xx=0,double yy=0){
    		x=xx;y=yy;
    	}
    }f[30005<<2],g[30005<<2];
    
    Complex operator+(const Complex A,const Complex B){return Complex(A.x+B.x,A.y+B.y);}
    Complex operator-(const Complex A,const Complex B){return Complex(A.x-B.x,A.y-B.y);}
    Complex operator*(const Complex A,const Complex B){return Complex(A.x*B.x-A.y*B.y,A.x*B.y+A.y*B.x);}
    
    inline void fft(Complex *f,int type){
    	for(int i=0;i<limit;i++)
    		if(i<rev[i]) swap(f[i],f[rev[i]]);
    	Complex Wn,w,tmp;int len;
    	for(int p=2;p<=limit;p<<=1){
    		len=p>>1;Wn=Complex(cos(Pi/len),type*sin(Pi/len));
    		for(int k=0;k<limit;k+=p){
    			w=Complex(1,0);
    			for(int t=k;t<k+len;t++){
    				tmp=f[t+len]*w;f[t+len]=f[t]-tmp;
    				f[t]=f[t]+tmp;w=w*Wn;
    			}
    		}
    	}
    	if(type==-1) for(int i=0;i<limit;i++) f[i].x/=limit;
    }
    
    inline int max(int x,int y){
    	return x>y?x:y;
    }
    
    signed main(){
    	n=rd();siz=sqrt(n*log2(n))+1;num=n/siz;if(n%siz) siz++; 
    	for(int i=1;i<=n;i++) {a[i]=rd();bl[i]=(i-1)/siz+1;R[a[i]]++;}
    	for(int i=1;i<=num;i++) l[i]=(i-1)*siz+1,r[i]=i*siz;r[num]=n;int tmp;
    	for(int i=1;i<=num;i++){
    		for(int j=l[i];j<=r[i];j++) R[a[j]]--;
    		for(int j=l[i];j<=r[i];j++){
    			for(int k=j+1;k<=r[i];k++){
    				tmp=a[j]*2-a[k];
    				if(tmp>=0 && tmp<=30000) ans+=L[tmp];
    				tmp=a[k]*2-a[j];
    				if(tmp>=0 && tmp<=30000) ans+=R[tmp];
    			}
    			L[a[j]]++;
    		}
    	}memset(L,0,sizeof(L));
    	for(int i=2;i<num;i++){
    		mx=-1;limit=1;
    		for(int j=1;j<l[i];j++) mx=max(mx,a[j]),L[a[j]]++;
    		for(int j=r[i]+1;j<=n;j++) mx=max(mx,a[j]),R[a[j]]++;
    		for(int j=0;j<=mx;j++) f[j].x=L[j],g[j].x=R[j];
    		while(limit<=mx*2) limit<<=1;
    		for(int j=0;j<limit;j++) rev[j]=(rev[j>>1]>>1)|((j&1)?limit>>1:0);
    		fft(f,1);fft(g,1);for(int j=0;j<limit;j++) f[j]=f[j]*g[j];fft(f,-1);
    		for(int j=l[i];j<=r[i];j++) ans+=(LL)(f[a[j]<<1].x+0.5);
    		for(int j=0;j<=mx;j++) L[j]=R[j]=0;
    		for(int j=0;j<limit;j++) f[j].x=f[j].y=g[j].x=g[j].y=0;
    	}
    	printf("%lld
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    程序员的数学基础课 时间和空间复杂度(上):优化性能是否只是“纸上谈兵”?5
    程序员的数学基础课 原来取余操作本身就是个哈希函数 4
    程序员的数学基础课 1 append
    https://www.tiobe.com/tiobe-index//
    贝多芬的《D 小调第九交响曲》
    Hive基础(11):元数据(二)分析Hive表和分区的统计信息(Statistics)
    Hive基础(10):元数据(一)Hive的元数据表结构详解
    qemu-system-aarch64: failed to find romfile "efi-virtio.rom"
    vhost + qemu-system-aarch64
    qemu-system-aarch64: -enable-kvm: No machine specified, and there is no default Use -machine help to list supported machines
  • 原文地址:https://www.cnblogs.com/sdfzsyq/p/10023174.html
Copyright © 2020-2023  润新知