题目:
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Follow up:
Could you do this in-place?
思路1:找对应关系,90度翻转是:旧纵坐标->新横坐标 新纵坐标= 旧的横坐标的取反(最大高度- 旧的横坐标)
public void rotate(int[][] matrix) { int[][] Temp = new int[matrix.length][matrix[0].length]; for(int i = 0 ; i< matrix.length;i++){ for(int j = 0 ; j< matrix.length;j++){ Temp[j][matrix.length-1-i] = matrix[i][j]; } } for(int i = 0 ; i< matrix.length;i++){ for(int j = 0 ; j< matrix.length;j++){ matrix[i][j] = Temp[i][j]; } } }
分析:这种结题方法使用了额外的存储空间!
思路2:翻转+对折
90度转换= 翻转(任意角度对角线翻转(撇捺向翻转):A[i][j] = A[j][i])+ 对折(上下或者左右翻转(横竖向翻转) :A[i][j] = A[i][length-1-j] )
注意270度也是类似的思路
推广:翻转180度= 翻转(任意角度对角线翻转:A[i][j] = A[j][i])
代码:
public void rotate(int[][] matrix) { //捺向翻转 for(int i = 0 ; i< matrix.length;i++){ for(int j = 0 ; j<i ;j++){ int Temp = matrix[i][j]; matrix[i][j] = matrix[j][i]; matrix[j][i] = Temp; } } //竖向翻转 for(int i = 0 ; i< matrix.length;i++){ for(int j = 0 ; j< matrix.length/2;j++){ int Temp = matrix[i][matrix.length-1-j]; matrix[i][matrix.length-1-j] = matrix[i][j]; matrix[i][j] = Temp; } } }