• Pairs Forming LCM (LightOJ


    Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    标签: 入门讲座题解 数论


    题目描述

    Find the result of the following code:

    long long pairsFormLCM( int n ) {
        long long res = 0;
        for( int i = 1; i <= n; i++ )
            for( int j = i; j <= n; j++ )
               if( lcm(i, j) == n ) res++; // lcm means least common multiple
        return res;
    }
    

    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
    Input

    Input starts with an integer T (≤ 200), denoting the number of test cases.
    
    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
    

    Output

    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
    

    Sample Input

    15
    
    2
    
    3
    
    4
    
    6
    
    8
    
    10
    
    12
    
    15
    
    18
    
    20
    
    21
    
    24
    
    25
    
    27
    
    29
    

    Sample Output

    Case 1: 2
    
    Case 2: 2
    
    Case 3: 3
    
    Case 4: 5
    
    Case 5: 4
    
    Case 6: 5
    
    Case 7: 8
    
    Case 8: 5
    
    Case 9: 8
    
    Case 10: 8
    
    Case 11: 5
    
    Case 12: 11
    
    Case 13: 3
    
    Case 14: 4
    
    Case 15: 2
    

    题意

    给定(n)
    (sum_{i = 1}^{n} sum_{j = i}^{n} [lcm(i, j) = n])的值。


    解析


    通过代码

    /*
    Problem
        LightOJ - 1236
    Status
    	Accepted
    Time
    	410ms
    Memory
    	19664kB
    Length
    	1299
    Lang
    	C++
    Submitted
    	2019-11-25 15:30:08
    Shared
    	
    RemoteRunId
    	1640611
    */
    
    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    const int MAXN = 1e7 + 50;
    
    bool vis[MAXN];
    int prime[MAXN / 10], p[MAXN / 10], m = 0, cnt;
    
    void fill_0()
    {
        for(int i = 1; i <= cnt; i ++)
            p[i] = 0;
        return;
    }
    void get_prime()                //线性筛,筛出1e7以内全部质数.
    {
        vis[1] = 1;
    
        for(int i = 2; i <= int(1e7 + 5); i ++){
            if(!vis[i])
                prime[++ m] = i;
    
            for(int j = 1; j <= m && i * prime[j] <= int(1e7 + 5); j ++){
                vis[i * prime[j]] = 1;
    
                if(i % prime[j] == 0)
                    break;
            }
        }
    
        return;
    }
    void get_fact(ll x)
    {
        fill_0();           //将p数组归零.
        cnt = 0;
        for(int i = 1; i <= m && 1ll * prime[i] * prime[i] <= x; i ++){ //以下求得一个数的质因数分解每个质数的幂次.
            if(x % prime[i] == 0){
    
                cnt ++;
                while(x % prime[i] == 0){
                
                    p[cnt] ++;
                    x /= prime[i];
                    
                }
    
            }
        }
    
        if(x != 1)
            p[++ cnt] = 1;
    
        return;
    }
    
    ll work()
    {
        ll res = 1;
    
        for(int i = 1; i <= cnt; i ++)
            res *= 1ll * (2 * p[i] + 1);
    
        return (res + 1) >> 1;
    }
    int main()
    {
        get_prime();
        
        int times, _case = 0;
    
        scanf("%d", &times);
    
        while(times --){
    
            ll x;
            scanf("%lld", &x);
    
            get_fact(x);
    
            printf("Case %d: %lld
    ", ++ _case, work());
        }
    
        return 0;
    }
    
    

  • 相关阅读:
    prometheus 文档
    go
    nginx
    python使用xlrd读取合并单元格
    python使用xlrd模块读取Excel
    创建Excel文件:ModuleNotFoundError: No module named 'openpyxl'
    openpyxl模块安装时报错: You are using pip version 19.2.3, however version 20.0.2 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command.
    Python定义字典函数报错TypeError: takes 0 positional arguments but 1 was given
    Mysql--information_scherma(虚拟库)
    day07--MySQL索引
  • 原文地址:https://www.cnblogs.com/satchelpp/p/11941165.html
Copyright © 2020-2023  润新知