• cocos2dx Vec2


    //SE是坐标重叠部分
    // returns true if segment A-B intersects with segment C-D. S->E is the overlap part
    bool isOneDimensionSegmentOverlap(float A, float B, float C, float D, float *S, float * E)
    {
        //线段的最长点和最短点的单坐标 x 或 y
        float ABmin = std::min(A, B);
        float ABmax = std::max(A, B);
        float CDmin = std::min(C, D);
        float CDmax = std::max(C, D);
        
        //不可能相交的情况
        if (ABmax < CDmin || CDmax < ABmin)
        {
            // ABmin->ABmax->CDmin->CDmax or CDmin->CDmax->ABmin->ABmax
            return false;
        }
        else
        {
            //SE表示的是AB向量在CD向量上的投影或者是CD向量在AB向量上的投影
            //单个坐标的排序一共四种情况
            if (ABmin >= CDmin && ABmin <= CDmax)
            {
                // CDmin->ABmin->CDmax->ABmax or CDmin->ABmin->ABmax->CDmax
                if (S != nullptr) *S = ABmin;
                if (E != nullptr) *E = CDmax < ABmax ? CDmax : ABmax;
            }
            else if (ABmax >= CDmin && ABmax <= CDmax)
            {
                // ABmin->CDmin->ABmax->CDmax
                if (S != nullptr) *S = CDmin;
                if (E != nullptr) *E = ABmax;
            }
            else
            {
                // ABmin->CDmin->CDmax->ABmax
                if (S != nullptr) *S = CDmin;
                if (E != nullptr) *E = CDmax;
            }
            return true;
        }
    }
    
    //向量的外积 x1y2-x2y1
    // cross product of 2 vector. A->B X C->D
    float crossProduct2Vector(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D)
    {
        return (D.y - C.y) * (B.x - A.x) - (D.x - C.x) * (B.y - A.y);
    }
    
    //返回两个向量的夹角
    float Vec2::angle(const Vec2& v1, const Vec2& v2)
    {
        float dz = v1.x * v2.y - v1.y * v2.x;
        return atan2f(fabsf(dz) + MATH_FLOAT_SMALL, dot(v1, v2));
    }
    
    //定义了向量的加法
    void Vec2::add(const Vec2& v1, const Vec2& v2, Vec2* dst)
    {
        GP_ASSERT(dst);
    
        dst->x = v1.x + v2.x;
        dst->y = v1.y + v2.y;
    }
    
    //修改this为重叠部分的x y值  短板效应
    void Vec2::clamp(const Vec2& min, const Vec2& max)
    {
        GP_ASSERT(!(min.x > max.x || min.y > max.y ));
    
        // Clamp the x value.
        if (x < min.x)
            x = min.x;
        if (x > max.x)
            x = max.x;
    
        // Clamp the y value.
        if (y < min.y)
            y = min.y;
        if (y > max.y)
            y = max.y;
    }
    
    //与上面的方法只是调用方式不一样
    void Vec2::clamp(const Vec2& v, const Vec2& min, const Vec2& max, Vec2* dst)
    {
        GP_ASSERT(dst);
        GP_ASSERT(!(min.x > max.x || min.y > max.y ));
    
        // Clamp the x value.
        dst->x = v.x;
        if (dst->x < min.x)
            dst->x = min.x;
        if (dst->x > max.x)
            dst->x = max.x;
    
        // Clamp the y value.
        dst->y = v.y;
        if (dst->y < min.y)
            dst->y = min.y;
        if (dst->y > max.y)
            dst->y = max.y;
    }
    
    //计算this向量和参数向量的距离
    float Vec2::distance(const Vec2& v) const
    {
        float dx = v.x - x;
        float dy = v.y - y;
    
        return std::sqrt(dx * dx + dy * dy);
    }
    
    //计算v1v2的点积
    float Vec2::dot(const Vec2& v1, const Vec2& v2)
    {
        return (v1.x * v2.x + v1.y * v2.y);
    }
    
    //计算this向量的长
    float Vec2::length() const
    {
        return std::sqrt(x * x + y * y);
    }
    
    //将向量标准化,使得sqrt(x*x + y*y) == 1
    void Vec2::normalize()
    {
        //先判断是否已经是标准化的了
        float n = x * x + y * y;
        // Already normalized.
        if (n == 1.0f)
            return;
        
        n = std::sqrt(n);
        // Too close to zero.
        if (n < MATH_TOLERANCE)
            return;
        
        n = 1.0f / n;
        x *= n;
        y *= n;
    }
    
    //获取标准化向量,不是标准化就转换
    Vec2 Vec2::getNormalized() const
    {
        Vec2 v(*this);
        v.normalize();
        return v;
    }
    
    //以指定的点point旋转angle角(以线段的锚点为中心旋转)
    void Vec2::rotate(const Vec2& point, float angle)
    {
        float sinAngle = std::sin(angle);
        float cosAngle = std::cos(angle);
        //如果旋转点为(0,0)点
        if (point.isZero())
        {
            float tempX = x * cosAngle - y * sinAngle;
            y = y * cosAngle + x * sinAngle;
            x = tempX;
        }
        //旋转点不在原点
        else
        {
            //先移动到原点
            float tempX = x - point.x;
            float tempY = y - point.y;
    
            //旋转完再移动回去
            x = tempX * cosAngle - tempY * sinAngle + point.x;
            y = tempY * cosAngle + tempX * sinAngle + point.y;
        }
    }
    
    //使用数组初始化xy坐标
    void Vec2::set(const float* array)
    {
        GP_ASSERT(array);
    
        x = array[0];
        y = array[1];
    }
    
    //a-b=c   得到的向量是从b的末尾指向a的末尾
    void Vec2::subtract(const Vec2& v1, const Vec2& v2, Vec2* dst)
    {
        GP_ASSERT(dst);
    
        dst->x = v1.x - v2.x;
        dst->y = v1.y - v2.y;
    }
    
    //判断目标向量和this向量是否相等
    bool Vec2::equals(const Vec2& target) const
    {
        return (std::abs(this->x - target.x) < FLT_EPSILON)
            && (std::abs(this->y - target.y) < FLT_EPSILON);
    }
    
    //this向量与目标向量在一定范围内近似相等
    bool Vec2::fuzzyEquals(const Vec2& b, float var) const
    {
        //判断xy值±var能不能包含b
        if(x - var <= b.x && b.x <= x + var)
            if(y - var <= b.y && b.y <= y + var)
                return true;
        return false;
    }
    
    //获取两个向量的夹角
    float Vec2::getAngle(const Vec2& other) const
    {
        Vec2 a2 = getNormalized();
        Vec2 b2 = other.getNormalized();
        float angle = atan2f(a2.cross(b2), a2.dot(b2));
        if (std::abs(angle) < FLT_EPSILON) return 0.f;
        return angle;
    }
    
    //通过角度旋转,传递的参数是旋转的点和角度
    Vec2 Vec2::rotateByAngle(const Vec2& pivot, float angle) const
    {
        //相当于按照原点旋转然后加上自定义旋转点的坐标
        return pivot + (*this - pivot).rotate(Vec2::forAngle(angle));
    }
    
    //检测直线是否相交
    bool Vec2::isLineIntersect(const Vec2& A, const Vec2& B,
                                const Vec2& C, const Vec2& D,
                                float *S, float *T)
    {
        // FAIL: Line undefined
        if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
        {
            return false;
        }
        
        //外积的其中一个意义是两个向量组成的平行四边形的面积
        const float denom = crossProduct2Vector(A, B, C, D);
        
        //如果面积为零则表明两个向量要么平行要么重叠
        if (denom == 0)
        {
            // Lines parallel or overlap
            return false;
        }
        
        //外积的面积所占的百分比  在下面的函数里面有进行判断
        if (S != nullptr) *S = crossProduct2Vector(C, D, C, A) / denom;
        if (T != nullptr) *T = crossProduct2Vector(A, B, C, A) / denom;
        
        return true;
    }
    
    //判断是否平行
    bool Vec2::isLineParallel(const Vec2& A, const Vec2& B,
                               const Vec2& C, const Vec2& D)
    {
        // FAIL: Line undefined
        if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
        {
            return false;
        }
        
        if (crossProduct2Vector(A, B, C, D) == 0)
        {
            // line overlap
            if (crossProduct2Vector(C, D, C, A) == 0 || crossProduct2Vector(A, B, C, A) == 0)
            {
                return false;
            }
            
            return true;
        }
        
        return false;
    }
    
    //判断是否重叠
    bool Vec2::isLineOverlap(const Vec2& A, const Vec2& B,
                                const Vec2& C, const Vec2& D)
    {
        // FAIL: Line undefined //零向量
        if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
        {
            return false;
        }
        
        if (crossProduct2Vector(A, B, C, D) == 0 &&
            (crossProduct2Vector(C, D, C, A) == 0 || crossProduct2Vector(A, B, C, A) == 0))
        {
            return true;
        }
        
        return false;
    }
    
    //判断是否部分重叠
    bool Vec2::isSegmentOverlap(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D, Vec2* S, Vec2* E)
    {
        
        if (isLineOverlap(A, B, C, D))
        {
            //判断是否相交
            return isOneDimensionSegmentOverlap(A.x, B.x, C.x, D.x, &S->x, &E->x) &&
            isOneDimensionSegmentOverlap(A.y, B.y, C.y, D.y, &S->y, &E->y);
        }  
        
        return false;
    }
    
    //判断线段相交
    bool Vec2::isSegmentIntersect(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D)
    {
        float S, T;
        
        if (isLineIntersect(A, B, C, D, &S, &T )&&
            (S >= 0.0f && S <= 1.0f && T >= 0.0f && T <= 1.0f))
        {
            return true;
        }
        
        return false;
    }
    
    //获取交点
    Vec2 Vec2::getIntersectPoint(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D)
    {
        float S, T;
        
        if (isLineIntersect(A, B, C, D, &S, &T))
        {
            // Vec2 of intersection
            //获取交点的坐标
            Vec2 P;
            P.x = A.x + S * (B.x - A.x);
            P.y = A.y + S * (B.y - A.y);
            return P;
        }
        
        return Vec2::ZERO;
    }
    
  • 相关阅读:
    putty配色方案
    LDAP
    cmder显示UTF-8字体
    CentOS Linux release 7.2.1511 (Core)
    扩展欧几里得算法
    Chinese remainder theorem
    弹琴吧
    RSA DH
    iOS 和 Android 的后台推送原理各是什么?有什么区别?
    Codelite安装详解
  • 原文地址:https://www.cnblogs.com/sakuraneo/p/11992050.html
Copyright © 2020-2023  润新知