Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合 为一个分类器的方法,即boostrapping方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。
1)bootstrapping方法的主要过程
主要步骤:
i)重复地从一个样本集合D中采样n个样本
ii)针对每次采样的子样本集,进行统计学习,获得假设Hi
iii)将若干个假设进行组合,形成最终的假设Hfinal
iv)将最终的假设用于具体的分类任务
2)bagging方法的主要过程 -----bagging可以有多种抽取方法
主要思路:
i)训练分类器
从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci
ii)分类器进行投票,最终的结果是分类器投票的优胜结果
但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。并由此而获得了2003年的哥德尔奖(Godel price)。
Schapire还提出了一种早期的boosting算法,其主要过程如下:
i)从样本整体集合D中,不放回的随机抽样n1 < n个样本,得到集合 D1
训练弱分类器C1
ii)从样本整体集合D中,抽取 n2 < n个样本,其中合并进一半被C1 分类错误的样本。得到样本集合D2
训练弱分类器C2
iii)抽取D样本集合中,C1 和 C2 分类不一致样本,组成D3
训练弱分类器C3
iv)用三个分类器做投票,得到最后分类结果
到了1995年,Freund and schapire提出了现在的adaboost算法,其主要框架可以描述为:
i)循环迭代多次
更新样本分布
寻找当前分布下的最优弱分类器
计算弱分类器误差率
ii)聚合多次训练的弱分类器
下面我们举一个简单的例子来看看adaboost的实现过程:
图中,“+”和“-”分别表示两种类别,在这个过程中,我们使用水平或者垂直的直线作为分类器,来进行分类。
第一步:
根据分类的正确率,得到一个新的样本分布D2,一个子分类器h1
其中划圈的样本表示被分错的。在右边的途中,比较大的“+”表示对该样本做了加权。
也许你对上面的ɛ1,ɑ1怎么算的也不是很理解。下面我们算一下,不要嫌我啰嗦,我最开始就是这样思考的,只有自己把算法演算一遍,你才会真正的懂这个算法的核心,后面我会再次提到这个。
算法最开始给了一个均匀分布 D 。所以h1 里的每个点的值是0.1。ok,当划分后,有三个点划分错了,根据算法误差表达式得到 误差为分错了的三个点的值之和,所以ɛ1=(0.1+0.1+0.1)=0.3,而ɑ1 根据表达式 的可以算出来为0.42. 然后就根据算法 把分错的点权值变大。如此迭代,最终完成adaboost算法。
第二步:
根据分类的正确率,得到一个新的样本分布D3,一个子分类器h2
第三步:
得到一个子分类器h3
整合所有子分类器:
因此可以得到整合的结果,从结果中看,及时简单的分类器,组合起来也能获得很好的分类效果,在例子中所有的。