Map
HashMap
jdk1.8 数组+链表+红黑树(Node<K,V>[] table;TreeNode),增删查的效率高;无序的,不可重复的,线程不安全的散列表
源码分析:(默认容量16,平衡因子0.75,阈值12=容量*平衡因子,所以平衡因子越大,扩容次数少,越小,越易扩容)
在插入时进行初始化扩容操作,随机插入数组节点(数组长度与hash值与操作确定 tab[i = (n - 1) & hash]) ,所以map的大小最好为2的n次方,因为2的n次方-1二进制为111,位置则根据hash值确定
插入时,如果数组当前位置存在数据,则说明存在hash冲突(hash冲突的坏处,越多链表越长,性能越低,空间利用率也低)
首先判断是否根据当前元素是同一元素(根据当前元素的hash值、key、K.equals()与插入元素比较),相同则新值替换旧值(所以重写equals()方法时需要重写hashcode,避免hash冲突)
不是同一元素,若当前节点为node链表,插入作为当前节点的尾节点,当链表长度超过8转为红黑树结构
不是同一元素,若当前节点为TreeNode结构,采用红黑树的插入方法,平衡树结构
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length;//扩容,初始化 if ((p = tab[i = (n - 1) & hash]) == null)//随机插入数组,第一个元素在首位 tab[i] = newNode(hash, key, value, null); else {//当前位置存在数据,hash冲突 Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p;//当前位置的hash值、key与equal()值相同,新值替换旧值 else if (p instanceof TreeNode)//不是同一个值,是红黑树则维持平衡添加 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {//不是同一个值,增加到链表尾节点,链表长度大于8则转换结构为红黑树 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash);//转为红黑树结构 break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key 新值替换旧值 V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
获取值,根据hash值获取数组位置(tab[i = (n - 1) & hash]))
有值,遍历当前元素,根据key、hash、equal()获取相同元素返回
无值,返回null
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {//根据hash值获取数组位置,存在值 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first;//确定根节点,根据key、hash、equal()去寻找元素 if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do {//遍历链表,根据key、hash、equal()去寻找元素 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
resize()--扩容(当容量大于阈值进行扩容,容量扩大2倍,阈值扩大2倍)、初始化
遍历旧数组
元素不存在链表,根据hash值随机到新数组
元素存在链表,根据奇偶链表,保证顺序,复制到新节点
元素存在红黑树链表,复制到新节点
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) {//扩容,容量翻倍 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // 初始化,容量为0 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) {//数据迁移,遍历旧数组,移动到新数组 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null)//不存在链表,随机到新节点 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode)//红黑树链表,移动到新节点 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // 链表,分成奇偶两条链表,保证顺序移动到新节点 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
ConcurrentHashMap
线程安全的HashMap,在put操作时使用了synchronized去保证线程安全性;
主要使用CAS+synchronized来保证线程安全性