第一章 随机事件与概率
概率论与数理统计研究对象是随机现象:
- 概率论:研究随机现象的模型(概率分布);
- 数理统计:随机现象的数据收集与处理。
§1.1 随机事件及其运算
随机现象:在一定条件下并不总是出现相同的结果的现象;
随机试验:对在相同条件下可以重复的随机现象的观察、记录、实验;
样本空间:随机现象的一切可能基本结果组成的集合;(Omega={omega}),(omega):基本结果、又称样本点;
- 样本空间的元素可以是数也可以不是数;
- 样本空间至少有两个样本点,仅含有两个样本点的样本空间是最简单的样本空间;
- 从样本空间含有样本点的个数来区分:
- 离散样本空间:样本点个数为有限个或可列个;
- 连续样本空间:样本点个数为不可列无限个。
随机事件:随机现象的某些样本点组成的集合,简称事件;
-
任意事件是相应样本空间的一个子集;(Venn图);
-
当子集中某个样本点出现了,就说事件发生了;
-
事件可以用集合表示,也可以用明白无误的语言描述;
基本事件 由样本空间Ω中的单个元素组成的子集; 必然事件 样本空间最大子集 不可能事件 样本空间Ω最小子集,即空集
随机变量:用来表示随机现象的结果的变量,表示时应写明随机变量的含义;
事件间的关系
- 包含关系:事件A发生必然导致事件B发生;
- 相等关系;
- 互不相容:A、B没有相同的样本点。
事件间的运算:并、交、差、余。
-
$Acup B $:事件A、B中所有的样本点组成的新事件,两个事件中至少有一个发生;
-
(A cap B):事件A、B中公共的样本点组成的新事件;
(cup_{i=1}^n A_i,cap_{i=1}^infty A_i) 交并运算可以推广至无限的情况;
-
(A setminus B):由在A中而不在事件B中的样本点组成的新事件;
[{X=a}={Xleq a}-{X<a},{a<Aleq b}={Xleq b}-{Xleq a} ] -
(overline{A}) :对立事件;
事件的运算性质:
- 交换律:A (cap) B=B (cap) A
- 结合律:((Acup B)cup C=Acup(Bcup C))
- 分配律:((Acup B)cap C=ACcup BC)
- De Morgen公式:(overline{cup_{i=1}^infty A_i}=cup_{i=1}^infty overline{A_i})
事件域
-
一个样本空间中某些子集及其运算结果而组成的集合类,记为(F),事件域要对集合的运算有封闭性,而:
交的运算可以通过并与对立实现;
差的运算可通过交与对立来实现; -
这样,并与对立是最基本的运算,于是事件域的定义如下:
设(Ω)为一样本空间,(F)为(Ω)的某些子集所组成的集合类,如果(F)满足:
- (Ω∈F);
- 若(A∈F),则对立事件(overline{A}∈F);
- 若(A_n∈F,n=1,2…..),则可列并属于(F)。
则称(F)为一个事件域,又称为(sigma)域 或(sigma)代数。
-
在概率论中,又称((Omega ,F)) 为可测空间。
§1.2 概率的定义及其确定方法
概率的公理化定义(Kolmogrov)
设(Omega)为一个样本空间,(F)为(Omega)的某些子集组成的一个事件域,如果对任意事件(Ain F),定义在(F)上的一个实值函数(P(A))满足:
非负性定理 若(Ain F),则(P(A)geq 0),
正则性公理 (P(Omega)=1),
可列可加性 (若A_1,A_2,cdots ,A_n,cdots互不相容,则:P(cup_{i=1}^infty A_i)=sum_{i=1}^infty (A_i)),
则称(P(A))为事件A的概率,称三元素((Omega,F,P))为概率空间
确定概率的频率方法
在大量重复实验中,用频率的稳定值去获得概率
与考察事件A有关的随机现象可大量重复进行;
在n次重复实验中,记(n(A))为事件A出现的次数,又称(n(A))为事件A的频数
[ f_n(A)=frac{n(A)}{n} ]
为事件A出现的频率
随着实验重复次数n的增加,频率(f_n(A))会稳定在某一常数a 附近,这个常数称为频率的稳定值。
确定概率的古典方法
所涉及到的随机现象只是有限个样本点;
每个样本点发生的可能性相等;
若事件A含k个样本点,则事件A的概率为
[P(a)=frac{事件A所含样本点个数}{Omega中所有样本点个数}=frac kn ]在古典方法中,求事件A的概率归结为计算A中含有的样本点个数和(Omega)中含有的样本点的总数。
- 抽样模型
- 放回抽样
- 盒子模型
- 生日问题
确定概率的几何方法
确定概率的主观方法