• lry_dae2


    #!/usr/bin/env python
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
    
    # Visualize decoder setting
    # Parameters
    learning_rate = 0.01
    batch_size = 256
    display_step = 1
    examples_to_show = 10
    
    # Network Parameters
    n_input = 784  # 28x28 pix,即 784 Features
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    X_noise = tf.placeholder("float", [None, n_input])
    
    # hidden layer settings
    n_hidden_1 = 256  # 经过第一个隐藏层压缩至256个
    n_hidden_2 = 128  # 经过第二个压缩至128个
    # 两个隐藏层的 weights 和 biases 的定义
    weights = {
        'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
        'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b2': tf.Variable(tf.random_normal([n_input])),
    }
    
    
    # Building the encoder
    def encoder(x):
        # Encoder Hidden layer 使用的 Activation function 是 sigmoid #1
        scale = 0.02
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x , weights['encoder_h1']),
                                       biases['encoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1 , weights['encoder_h2']),
                                       biases['encoder_b2']))
        return layer_2
    
    
    # Building the decoder
    def decoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        return layer_2
    
    
    '''
    # Visualize encoder setting
    # 只显示解压后的数据
    learning_rate = 0.01    # 0.01 this learning rate will be better! Tested
    training_epochs = 10
    batch_size = 256
    display_step = 1
    # Network Parameters
    n_input = 784  # MNIST data input (img shape: 28*28)
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    # hidden layer settings
    n_hidden_1 = 128
    n_hidden_2 = 64
    n_hidden_3 = 10
    n_hidden_4 = 2  #将原有784Features 的数据压缩成2 Features数据
    weights = {
        'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
        'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
        'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
        'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),
        'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
        'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
        'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
        'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
        'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
        'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b4': tf.Variable(tf.random_normal([n_input])),#注意:在第四层时,输出量不再是 [0,1] 范围内的数,
        #而是将数据通过默认的 Linear activation function 调整为 (-∞,∞) 
    }
    def encoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
                                       biases['encoder_b3']))
        layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
                                        biases['encoder_b4'])
        return layer_4
    def decoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
                                    biases['decoder_b3']))
        layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
                                    biases['decoder_b4']))
        return layer_4
    '''
    
    # Construct model
    encoder_op = encoder(X)
    decoder_op = decoder(encoder_op)
    
    # Prediction
    y_pred = decoder_op
    # Targets (Labels) are the input data.
    y_true = X
    
    # Define loss and optimizer, minimize the squared error
    # 比较原始数据与还原后的拥有 784 Features 的数据进行 cost 的对比,
    # 根据 cost 来提升我的 Autoencoder 的准确率
    loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2))  # 进行最小二乘法的计算(y_true - y_pred)^2
    # loss = tf.reduce_mean(tf.square(y_true - y_pred))
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
    
    def corruptoin(x,noise_factor = 0.03):
        noisy_imgs = x +noise_factor * np.random.randn(*x.shape)
        #noisy_imgs = x + noise_factor * tf.random_normal(x)
        noisy_imgs = np.clip(noisy_imgs,0.,1.)
        return noisy_imgs
    
    # Launch the graph
    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        total_batch = int(mnist.train.num_examples / batch_size)
        training_epochs = 20
        # Training cycle
        for epoch in range(training_epochs):  # 到好的的效果,我们应进行10 ~ 20个 Epoch 的训练
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0 Epoch: 0020 cost= 0.060871094,0.046518125
    
                batch_xs = corruptoin(batch_xs) #Epoch: 0020 cost= 0.140342906,0.051774822 Epoch: 0020 cost= 0.055670232,0.046838347,Epoch: 0020 cost= 0.048563793,0.043603953,0.02=Epoch: 0020 cost= 0.046707503,0.0418
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, loss], feed_dict={X: batch_xs})
            # Display logs per epoch step
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch + 1),
                      "cost=", "{:.9f}".format(c))
                a,t = sess.run([optimizer, loss], feed_dict={X: mnist.test.images[:examples_to_show]})
                print(t)
        print("Optimization Finished!")
    
        # Applying encode and decode over test set
        encode_decode = sess.run(
            y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
        # Compare original images with their reconstructions
        f, a = plt.subplots(2, 10, figsize=(10, 2))
        for i in range(examples_to_show):
            a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
            a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
    
        plt.show()
    
        # encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
        # sc = plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels) #散点图
        # plt.colorbar(sc) #scatter设置颜色渐变条colorbar
  • 相关阅读:
    oralce索引的使用
    oracle中connect by prior的使用
    oracle函数listagg使用
    oracle函数的使用
    redis高可用集群搭建
    Node.js安装及环境配置之Windows篇
    Repeater 合并单元格
    c#16进制转浮点数单精度类型
    EF Core 实体映射表或视图
    docker 构建filebeat镜像
  • 原文地址:https://www.cnblogs.com/rongye/p/13195158.html
Copyright © 2020-2023  润新知