• URAL 1297 Palindrome 后缀数组+RMQ


    本题是利用后缀数组求最长的回文串。

    方法是将字符串反转之后拼接到原来的字符串末尾,中间用一个没有出现过的分割符隔开,原因是防止最长公共前缀横跨两个串。

    之后分别枚举回文串的中点,以及回文串长度是奇数还是偶数,看一下对应位置的最长公共前缀即可。

    这里的求最长公共前缀要处理RMQ问题,线段树固然可以解决,但是显然ST 算法更加快一些。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <climits>
    #include <string>
    
    using namespace std;
     
    #define MP make_pair
    #define PB push_back
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef vector<int> VI;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    const int INF = INT_MAX / 3;
    const double eps = 1e-8;
    const LL LINF = 1e17;
    const double DINF = 1e60;
    const int maxn = 5005;
    
    
    //以下是倍增法求后缀数组
    int wa[maxn], wb[maxn], wv[maxn], ws[maxn];
    int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a + l] == r[b + l]; }
    void da(int *r, int *sa, int n, int m) {
        int i, j, p, *x = wa, *y = wb, *t;
        for(i = 0; i < m; i++) ws[i] = 0;
        for(i = 0; i < n; i++) ws[x[i] = r[i]]++;
        for(i = 1; i < m; i++) ws[i] += ws[i - 1];
        for(i = n - 1; i >= 0; i--) sa[--ws[x[i]]] = i;
        for(j = 1, p = 1; p < n; j <<= 1, m = p) {
            for(p = 0, i = n - j; i < n; i++) y[p++] = i;
            for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j;
            for(i = 0; i < n; i++) wv[i] = x[y[i]];
            for(i = 0; i < m; i++) ws[i] = 0;
            for(i = 0; i < n; i++) ws[wv[i]]++;
            for(i = 0; i < m; i++) ws[i] += ws[i - 1];
            for(i = n - 1; i >= 0; i--) sa[--ws[wv[i]]] = y[i];
            for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) 
                x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
        }
    }
    
    //以下是求解height 数组
    int height[maxn], Rank[maxn];
    void calheight(int *r, int *sa, int n) {
        int i, j, k = 0;
        for(i = 1; i <= n; i++) Rank[sa[i]] = i;
        for(i = 0; i < n; height[Rank[i++]] = k) 
            for(k ? k-- : 0, j = sa[Rank[i] - 1]; 
                    r[i + k] == r[j + k]; k++) ;
    }
    
    
    char buf[maxn];
    int str[maxn], sa[maxn], len, n;
    int minv[maxn][20];
    
    void init_RMQ() {
        for(int i = 0; i <= len; i++) minv[i][0] = height[i];
        for(int j = 1; (1 << j) <= len + 1; j++) {
            for(int i = 0; i + (1 << j) - 1 <= len; i++) {
                minv[i][j] = min(minv[i][j - 1], minv[i + (1 << (j - 1))][j - 1]);
            }
        }
    }
    
    int query(int ql, int qr) {
        if(ql > qr) swap(ql, qr);
        ql++;
        int k = 0;
        while((1 << (k + 1)) <= qr - ql + 1) k++;
        return min(minv[ql][k], minv[qr - (1 << k) + 1][k]);
    }
    
    int main() {
        while(scanf("%s", buf) != EOF) {
            n = len = strlen(buf);
            for(int i = 0; i < len; i++) str[i] = buf[i] + 1;
            str[len++] = '*' + 1;
            for(int i = n - 1; i >= 0; i--) str[len++] = buf[i] + 1;
            str[len] = 0;
            da(str, sa, len + 1, 200);
            calheight(str, sa, len);
            init_RMQ();
            int anslen = 1, anspos = 0;
            for(int i = 0; i < n; i++) {
                int nowval = query(Rank[i], Rank[len - i - 1]);
                int nowlen = nowval * 2 - 1;
                if(nowlen > anslen) {
                    anslen = nowlen; anspos = i - nowval + 1;
                }
                if(i == 0) continue;
                nowval = query(Rank[i], Rank[len - i]);
                nowlen = nowval * 2;
                if(nowlen > anslen) {
                    anslen = nowlen; anspos = i - nowval;
                }
            }
            for(int i = 0; i < anslen; i++) putchar(buf[i + anspos]);
            puts("");
        }
        return 0;
    }
    
  • 相关阅读:
    FusionMap 检测融合基因
    嵌合体序列
    seqtk 的安装和使用
    cutadapt 的安装与使用
    C语言简单选择排序
    C语言冒泡排序
    Java实现的各种排序算法(包括冒泡,快排等)
    C++实现顺序计算输入表达式的值
    java多线程有几种实现方法?线程之间如何同步
    java中==与equal()方法的区别
  • 原文地址:https://www.cnblogs.com/rolight/p/3995309.html
Copyright © 2020-2023  润新知