• 1396


    点击打开链接

    题意:

    按顺序给出一小岛(多边形)的点

    求岛上某点离海最远的距离

    解法:

    不断的收缩多边形(求半平面交)

    直到无限小

    二分收缩的距离即可

    如图

    //大白p263
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <functional>
    #include <set>
    #include <iostream>
    #include <vector>
    #include <algorithm>
    using namespace std;
    const double eps=1e-7;//精度
    const int INF=0x3f3f3f3f;
    const double PI=acos(-1.0);
    int dcmp(double x){//判断double等于0或。。。
    	if(fabs(x)<eps)return 0;else return x<0?-1:1;
    }
    struct Point{
    	double x,y;
    	Point(double x=0,double y=0):x(x),y(y){}
    };
    typedef Point Vector;
    typedef vector<Point> Polygon;
    Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
    Vector operator-(Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
    Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
    Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
    bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
    bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
    bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
    struct Segment{
    	Point a,b;
    	Segment(){}
    	Segment(Point _a,Point _b){a=_a,b=_b;}
    	bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
    	bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
    };
    struct Circle{
    	Point c;
    	double r;
    	Circle(){}
    	Circle(Point _c, double _r):c(_c),r(_r) {}
    	Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
    	bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
    };
    struct Line{
    	Point p;
    	Vector v;
    	double ang;
    	Line() {}
    	Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
    	bool operator<(const Line &L)const{return  ang < L.ang;}
    };
    double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积
    double Length(Vector a){return sqrt(Dot(a,a));}//|a| 向量长度
    double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ
    double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积
    double Area2(Point a,Point b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点
    double DegreeToRadius(double deg){return deg/180*PI;}
    double GetRerotateAngle(Vector a,Vector b){//向量a顺时针旋转theta度得到向量b的方向
    	double tempa=Angle(a,Vector(1,0));
    	if(a.y<0) tempa=2*PI-tempa;
    	double tempb=Angle(b,Vector(1,0));
    	if(b.y<0) tempb=2*PI-tempb;
    	if((tempa-tempb)>0) return tempa-tempb;
    	else return tempa-tempb+2*PI;
    }
    double torad(double deg){return deg/180*PI;}//角度化为弧度
    Vector Rotate(Vector a,double rad){//向量逆时针旋转rad弧度
    	return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
    }
    Vector Normal(Vector a){//计算单位法线
    	double L=Length(a);
    	return Vector(-a.y/L,a.x/L);
    }
    Point GetLineProjection(Point p,Point a,Point b){//点在直线上的投影
    	Vector v=b-a;
    	return a+v*(Dot(v,p-a)/Dot(v,v));
    }
    Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
    	Vector u=p-q;
    	double t=Cross(w,u)/Cross(v,w);
    	return p+v*t;
    }
    int ConvexHull(Point* p,int n,Point* sol){//计算凸包
    	sort(p,p+n);
    	int m=0;
    	for(int i=0;i<n;i++){
    		while(m>1&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
    		sol[m++]=p[i];
    	}
    	int k=m;
    	for(int i=n-2;i>=0;i--){
    		while(m>k&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
    		sol[m++]=p[i];
    	}
    	if(n>0) m--;
    	return m;
    }
    double Heron(double a,double b,double c){//海伦公式
    	double p=(a+b+c)/2;
    	return sqrt(p*(p-a)*(p-b)*(p-c));
    }
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){//线段规范相交判定
    	double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
    	double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    	return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
    }
    double CutConvex(const int n,Point* poly, const Point a,const Point b, vector<Point> result[3]){//有向直线a b 切割凸多边形
    	vector<Point> points;
    	Point p;
    	Point p1=a,p2=b;
    	int cur,pre; 
    	result[0].clear(); 
    	result[1].clear(); 
    	result[2].clear();
    	if(n==0) return 0;
    	double tempcross;
    	tempcross=Cross(p2-p1,poly[0]-p1);
    	if(dcmp(tempcross)==0) pre=cur=2;
    	else if(tempcross>0) pre=cur=0;
    	else pre=cur=1;
    	for(int i=0;i<n;i++){
    		tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
    		if(dcmp(tempcross)==0) cur=2;
    		else if(tempcross>0) cur=0;
    		else cur=1;
    		if(cur==pre){
    			result[cur].push_back(poly[(i+1)%n]); 
    		}
    		else{
    			p1=poly[i]; 
    			p2=poly[(i+1)%n];
    			p=GetLineIntersection(p1,p2-p1,a,b-a);
    			points.push_back(p); 
    			result[pre].push_back(p); 
    			result[cur].push_back(p); 
    			result[cur].push_back(poly[(i+1)%n]); 
    			pre=cur;
    		}
    	}
    	sort(points.begin(),points.end());
    	if(points.size()<2){
    		return 0; 
    	}
    	else{
    		return Length(points.front()-points.back());
    	}
    }
    double DistanceToSegment(Point p,Segment s){//点到线段的距离
    	if(s.a==s.b) return Length(p-s.a);
    	Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
    	if(dcmp(Dot(v1,v2))<0) return Length(v2);
    	else if(dcmp(Dot(v1,v3))>0) return Length(v3);
    	else return fabs(Cross(v1,v2))/Length(v1);
    }
    bool isPointOnSegment(Point p,Segment s){
    	return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0;
    }
    int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
    	int wn=0;
    	for(int i=0;i<n;i++){
    		Point& p2=poly[(i+1)%n];
    		if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上
    		int k=dcmp(Cross(p2-poly[i],p-poly[i]));
    		int d1=dcmp(poly[i].y-p.y);
    		int d2=dcmp(p2.y-p.y);
    		if(k>0&&d1<=0&&d2>0)wn++;
    		if(k<0&&d2<=0&&d1>0)wn--;
    	}
    	if(wn) return 1;//点在内部
    	else return 0;//点在外部
    }
    double PolygonArea(Point* p,int n){//多边形有向面积
    	double area=0;
    	for(int i=1;i<n-1;i++)
    		area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    	return area/2;
    }
    int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数
    	double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
    	double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
    	double delta = f*f - 4*e*g;
    	if(dcmp(delta) < 0)  return 0;//相离
    	if(dcmp(delta) == 0) {//相切
    		p1=p1=C.point(-f/(2*e));
    		return 1;
    	}//相交
    	p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
    	p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
    	return 2;
    }
    double rotating_calipers(Point *ch,int n)//旋转卡壳
    {
    	int q=1;
    	double ans=0;
    	ch[n]=ch[0];
    	for(int p=0;p<n;p++)
    	{
    		while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
    			q=(q+1)%n;
    		ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
    	}
    	return ans;
    }
    Polygon CutPolygon(Polygon poly,Point a,Point b){//用a->b切割多边形 返回左侧
    	Polygon newpoly;
    	int n=poly.size();
    	for(int i=0;i<n;i++){
    		Point c=poly[i];
    		Point d=poly[(i+1)%n];
    		if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c);
    		if(dcmp(Cross(b-a,c-d))!=0){
    			Point ip=GetLineIntersection(a,b-a,c,d-c);
    			if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip);
    		}
    	}
    	return newpoly;
    }
    int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){//求两圆相交
    	double d=Length(c1.c-c2.c);
    	if(dcmp(d)==0){
    		if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合
    		return 0;
    	}
    	if(dcmp(c1.r+c2.r-d)<0) return 0;
    	if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0;
    	double a=Angle(c2.c-c1.c,Vector(1,0));
    	double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
    	p1=c1.point(a-da);p2=c1.point(a+da);
    	if(p1==p2) return 1;
    	return 2;
    }
    bool isPointOnleft(Point p,Line L){return dcmp(Cross(L.v,p-L.p))>0;}
    int HalfplaneIntersection(Line *L,int n,Point* poly){//半平面交
    	sort(L,L+n);
    	int first,last;
    	Point* p=new Point[n];
    	Line* q=new Line[n];
    	q[first=last=0]=L[0];
    	for(int i=1;i<n;i++){
    		while(first<last&&!isPointOnleft(p[last-1],L[i])) last--;
    		while(first<last&&!isPointOnleft(p[first],L[i])) first++;
    		q[++last]=L[i];
    		if(dcmp(Cross(q[last].v,q[last-1].v))==0){
    			last--;
    			if(isPointOnleft(L[i].p,q[last])) q[last]=L[i];
    		}
    		if(first<last) p[last-1]=GetLineIntersection(q[last-1].p,q[last-1].v,q[last].p,q[last].v);
    	}
    	while(first<last&&!isPointOnleft(p[last-1],q[first])) last--;
    	if(last-first<=1) return 0;
    	p[last]=GetLineIntersection(q[last].p,q[last].v,q[first].p,q[first].v);
    	int m=0;
    	for(int i=first;i<=last;i++) poly[m++]=p[i];
    	return m;
    }
    //两点式化为一般式A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A);
    //--------------------------------------
    //--------------------------------------
    //--------------------------------------
    //--------------------------------------
    //--------------------------------------
    Point p[200],poly[200];
    Line L[200];
    Vector v[200],v2[200];
    int main(){
    	int n;
    	while(scanf("%d",&n)&&n){
    		int m,x,y;
    		for(int i=0;i<n;i++)
    			scanf("%lf%lf",&p[i].x,&p[i].y);
    		for(int i=0;i<n;i++){
    			v[i]=p[(i+1)%n]-p[i];
    			v2[i]=Normal(v[i]);
    		}
    		double left=0,right=20000;
    		while(dcmp(right-left)>0){
    			double mid=left+(right-left)/2;
    			for(int i=0;i<n;i++) L[i]=Line(p[i]+v2[i]*mid,v[i]);
    			m=HalfplaneIntersection(L,n,poly);
    			if(!m) right=mid;
    			else left=mid;
    		}
    		printf("%.6lf
    ",left);
    	}
    	return 0;
    }


     

  • 相关阅读:
    后台获取不规则排列RadioButton组的值
    通过使用ScriptManager.RegisterStartupScript,呈现后台多次使用alert方法
    通过获取DNS解析的未转义主机名,区分测试环境和正式环境代码
    Autolayout自动布局
    JSON和XML
    物理引擎UIDynamic
    呈现样式UIModalPresentation
    多线程 GCD
    FMDB数据库框架
    SQLite编码
  • 原文地址:https://www.cnblogs.com/riskyer/p/3253810.html
Copyright © 2020-2023  润新知