• 51nod1218 最长递增子序列 V2


    看见标签推荐顺便就做了吧

    记$f[i], g[i]$为$i$的含$i$的前缀最长递增子序列和后缀递增子序列

    只要满足$f[i] + g[i] == LIS + 1$,那么$i$就是可能的

    对于$i$而言,其一定出现在$LIS$中时,当且仅当$f[i]$唯一

    如果存在$i, j (i < j)$满足$f[i] = f[j]$,那么一定有$a[i] > a[j]$,这时这两者构成的$LIS$一定不相同

    否则,如果$f[i]$唯一,那么所有$f$为$f[i] + 1$的点必须由它转移过来

    注:树状数组打快了,结果$i += lowbit(i)$打成了$i ++$.........

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    extern inline char gc() {
        static char RR[23456], *S = RR + 23333, *T = RR + 23333;
        if(S == T) fread(RR, 1, 23333, stdin), S = RR;
        return *S ++;
    }
    inline int read() {
        int p = 0, w = 1; char c = gc();
        while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
        while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
        return p * w;
    }
    
    #define ri register int
    #define sid 50050
    
    int n, cnp, H[sid * 2];
    int f[sid], g[sid];
    int t[sid], a[sid], v[sid];
    
    inline int qry(int x) {
        int ret = 0;
        for(ri i = x; i; i -= i & (-i)) ret = max(ret, t[i]);
        return ret;
    }
    
    inline int mdf(int x, int v) {
        for(ri i = x; i <= cnp; i += i & (-i)) t[i] = max(t[i], v);
    }
    
    int num[sid];
    
    int main() {
        n = read();
        for(ri i = 1; i <= n; i ++) {
            v[i] = read();
            H[i] = v[i]; H[i + n] = -v[i];
        }
        
        sort(H + 1, H + n + n + 1);
        cnp = unique(H + 1, H + n + n + 1) - H - 1;
        for(ri i = 1; i <= n; i ++)
        a[i] = lower_bound(H + 1, H + cnp + 1, v[i]) - H;
        
        for(ri i = 1; i <= n; i ++)
        f[i] = qry(a[i] - 1) + 1, mdf(a[i], f[i]);
        
        memset(t, 0, sizeof(t));
        for(ri i = 1; i <= n; i ++)
        a[i] = lower_bound(H + 1, H + cnp + 1, -v[i]) - H;
        
        for(ri i = n; i >= 1; i --)
        g[i] = qry(a[i] - 1) + 1, mdf(a[i], g[i]);
        
        int ans = 0;
        for(ri i = 1; i <= n; i ++) ans = max(ans, f[i]);
        
        for(ri i = 1; i <= n; i ++)
        if(f[i] + g[i] == ans + 1) num[f[i]] ++;
        printf("A:");
        for(ri i = 1; i <= n; i ++)
        if(f[i] + g[i] == ans + 1 && num[f[i]] > 1) printf("%d ", i);
        printf("
    B:");
        for(ri i = 1; i <= n; i ++)
        if(f[i] + g[i] == ans + 1 && num[f[i]] == 1) printf("%d ", i);
        return 0;
    }
  • 相关阅读:
    C-二维数组,多维数组
    C-冒泡排序,选择排序,数组
    C语言的学习-基础知识点
    设置程序图标-初识IOS
    UIActivityIndicatorView-初识IOS
    生命周期-初识IOS
    机器学习
    开源的python机器学习模块
    基于Python使用scrapy-redis框架实现分布式爬虫 注
    Scrapy研究探索(六)——自动爬取网页之II(CrawlSpider)
  • 原文地址:https://www.cnblogs.com/reverymoon/p/9496051.html
Copyright © 2020-2023  润新知