• RMQ


    1 D

    void initRMQ(int n)
    {
            int MAX=(int)log2(n);
    	FOR(i,1,n)
    	{
    		f[i][0]=a[i];
    	}
    	FOR(j,1,MAX)
    	{
    		FOR(i,1,n) if (i+(1<<(j-1))<=n)
    		{
    			f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
    		}
    	}    
    }
    int getRMQ(int x,int y)
    {
    	int k=(int)log2(y-x+1);
    	return max(f[x][k],f[y-(1<<(k))+1][k]);
    }
    

    two D

    void initRMQ(int n,int m)
    {
    //        leave out init a[i][j][0][0]
    	int Maxn=(int)log2(n);
    	int Maxm=(int)log2(m);
    	FOR(ii,0,Maxn)
    	{
    		FOR(jj,0,Maxm)
    		{
    			if (ii+jj)
    			{
    				FOR(i,1,n) if (i+(1<<ii)-1<=n)
    				{
    					FOR(j,1,m) if (j+(1<<jj)-1<=m)
    					{
    						if (ii==0)
    						{
    							f[i][j][ii][jj]=max(f[i][j][ii][jj-1],f[i][j+(1<<(jj-1))][ii][jj-1]);
    						}
    						else
    						{
    							f[i][j][ii][jj]=max(f[i][j][ii-1][jj],f[i+(1<<(ii-1))][j][ii-1][jj]);
    						}
    					}
    				}
    			}
    		}
    	 } 
    }
    int getRMQ(int x1,int y1,int x2,int y2)//x1,y1:upleft
    {
    	int k1=(int)log2((x2-x1+1));
    	int k2=(int)log2((y2-y1+1));
    	int tmp1=f[x1][y1][k1][k2];
    	int tmp2=f[x2-(1<<k1)+1][y2-(1<<k2)+1][k1][k2];
    	int tmp3=f[x2-(1<<k1)+1][y1][k1][k2];
    	int tmp4=f[x1][y2-(1<<k2)+1][k1][k2];
    	int maxx=max(max(tmp1,tmp2),max(tmp3,tmp4));
    	return maxx;
    }
    
  • 相关阅读:
    poj 1026 Cipher
    python中的global
    基于DL的文本分类综述
    K近邻算法学习
    聚类评价指标学习
    pytorch自动求导学习
    反向传播的推导
    二分搜索常用【转载】
    《Attention is all you need》论文学习
    5-28日|5-30日
  • 原文地址:https://www.cnblogs.com/reshuffle/p/12362083.html
Copyright © 2020-2023  润新知