• Stock Charts


    Description
    You're in the middle of writing your newspaper's end-of-year economics summary,
    and you've decided that you want to show a number of charts to demonstrate how
    different stocks have performed over the course of the last year. You've already
    decided that you want to show the price of n different stocks, all at the same k
    points of the year.
    
    A simple chart of one stock's price would draw lines between the points (0,
    price0), (1, price1), ... , (k-1, pricek-1), where pricei is the price of the
    stock at the ith point in time.
    
    In order to save space, you have invented the concept of an overlaid chart. An
    overlaid chart is the combination of one or more simple charts, and shows the
    prices of multiple stocks (simply drawing a line for each one). In order to avoid
    confusion between the stocks shown in a chart, the lines in an overlaid chart may
    not cross or touch.
    
    Given a list of n stocks' prices at each of k time points, determine the minimum
    number of overlaid charts you need to show all of the stocks' prices.
    
    
    
    Input
    The first line of input will contain a single integer T, the number of test
    cases. After this will follow T test cases on different lines, each of the form:
    
    n k
    price0,0 price0,1 ... price0,k-1
    price1,0 price1,1 ... price1,k-1
    ...
    pricen-1,0 pricen-1,1 ... pricen-1,k-1
    
    Where pricei,j is an integer, the price of the ith stock at time j.
    
    
    
    Output
    For each test case, a single line containing "Case #X: Y", where X is the number
    of the test-case (1-indexed) and Y is the minimum number of overlaid charts
    needed to show the prices of all of the stocks.
    1 ≤ T ≤ 100
    2 ≤ k ≤ 25
    0 ≤ pricei,j ≤ 1000000
    1 ≤ n ≤ 100
    
    
    Sample Input
    3
    3 4
    1 2 3 4
    2 3 4 6
    6 5 4 3
    3 3
    5 5 5
    4 4 6
    4 5 4
    5 2
    1 1
    2 2
    5 4
    4 4
    4 1
    
    Sample Output
    Case #1: 2
    Case #2: 3
    Case #3: 2
    

    题解:

      这个题目首先,马上就可以知道那些股票可以放在一张纸上,那些不可以,那么就可以把可以放在一张纸上的点连边。

      那么,我们把股票看成一个点,一条路径看成一张纸,那么这个题目就转化成了最小路径覆盖的问题,用网络流或者二分图解决。

      想到这里,我发现我dinic忘了怎么打了,匈牙利也忘了,板子部分是找自己模板的,以后用dinic再打一遍吧。

    代码:

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #define MAXN 1000
    using namespace std;
    int cost[MAXN][MAXN];
    int flag[MAXN],can[MAXN][MAXN],too[MAXN];
    int n,k,ans;
    
    void pre(){
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int K=2;k<=k;K++){
                    if((cost[i][K]>cost[j][K])&&(cost[i][K-1]>cost[j][K-1])) break;
            if((cost[i][K]-cost[j][K])*(cost[i][K-1]-cost[j][K-1])<=0) break;
            if(K==k) can[i][j+n]=can[j+n][i]=1;
                }
    }
    
    bool dfs(int now){
        for(int i=n+1;i<=n*2;i++){
            if(can[now][i]&&flag[i]==0){
                flag[i]=1;
                if(!too[i]||dfs(too[i])){
                    too[i]=now;return 1;
                }
            }
        }
        return 0;
    }
    
    int main()
    {
        int t;cin>>t;
        int Case=0;
        while(t--){
            scanf("%d%d",&n,&k);
            memset(cost,0,sizeof(cost));
            memset(can,0,sizeof(can));
            memset(too,0,sizeof(too));
            memset(flag,0,sizeof(flag));ans=0;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=k;j++) scanf("%d",&cost[i][j]);
            pre();
            for(int i=1;i<=n;i++){
                for(int j=n+1;j<=n*2;j++) flag[j]=0;
                if(dfs(i)) ans++;
            }
            printf("Case #%d: %d
    ",++Case,n-ans);
        }
        return 0;
    }
  • 相关阅读:
    VMware虚拟机安装
    dmesg功能介绍
    Linux查看MAC地址方法
    linux介绍
    spring boot整合mybatis框架及增删改查(jsp视图)
    idea 热部署的配置
    idea注释类,方法
    idea2018破解
    BootStrap简单table
    解决bootstrap模态框居中问题
  • 原文地址:https://www.cnblogs.com/renjianshige/p/7563157.html
Copyright © 2020-2023  润新知