• CF700E:Cool Slogans(SAM,线段树合并)


    Description

    给你一个字符串,如果一个串包含两个可有交集的相同子串,那么这个串的价值就是子串的价值+1。问你给定字符串的最大价值子串的价值。

    Input

    第一行读入字符串长度$n$,第二行是字符串。

    Output

    一行答案。

    Sample Input1

    3
    abc

    Sample Output1

    1

    Sample Input2

    5
    ddddd

    Sample Output2

    5

    Sample Input3

    11
    abracadabra

    Sample Output3

    3

    Solution

    首先把后缀树建立出来,然后从下往上线段树合并一下$endpos$。

    设$f[i]$表示从后缀树的根$DP$到了$i$节点的最大价值,$top[i]$表示$i$节点是从哪个节点转移来的。

    如果父亲代表的字符串在当前节点代表的字符串中出现了两次及以上,那么就$f[x]=f[fa]+1,top[x]=x$

    否则$f[x]=f[fa],top[x]=top[fa]$

    父亲代表的字符串在当前节点代表的字符串中出现的次数可以直接根据$SAM$的$step$数组和线段树合并出的$endpos$什么的直接判断一下。

    Code

      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdio>
      4 #define N (800009)
      5 using namespace std;
      6 
      7 struct Sgt{int ls,rs,val;}Segt[N<<5];
      8 struct Edge{int to,next;}edge[N<<1];
      9 int n,ans,sgt_num,Root[N],f[N],top[N];
     10 int head[N],num_edge;
     11 int last=1,p,q,np,nq,cnt=1;
     12 int fa[N],son[N][26],step[N],pos[N];
     13 char s[N];
     14 
     15 void add(int u,int v)
     16 {
     17     edge[++num_edge].to=v;
     18     edge[num_edge].next=head[u];
     19     head[u]=num_edge;
     20 }
     21 
     22 void Insert(int x,int r)
     23 {
     24     p=last; np=last=++cnt;
     25     step[np]=step[p]+1; pos[np]=r;
     26     while (p && !son[p][x]) son[p][x]=np, p=fa[p];
     27     if (!p) fa[np]=1;
     28     else
     29     {
     30         q=son[p][x];
     31         if (step[q]==step[p]+1) fa[np]=q;
     32         else
     33         {
     34             nq=++cnt; step[nq]=step[p]+1; pos[nq]=r;
     35             memcpy(son[nq],son[q],sizeof(son[q]));
     36             fa[nq]=fa[q]; fa[q]=fa[np]=nq;
     37             while (son[p][x]==q) son[p][x]=nq, p=fa[p];
     38         }
     39     }
     40 }
     41 
     42 void Update(int &now,int l,int r,int x)
     43 {
     44     if (!now) now=++sgt_num;
     45     Segt[now].val++;
     46     if (l==r) return;
     47     int mid=(l+r)>>1;
     48     if (x<=mid) Update(Segt[now].ls,l,mid,x);
     49     else Update(Segt[now].rs,mid+1,r,x);
     50 }
     51 
     52 int Merge(int x,int y)
     53 {
     54     if (!x || !y) return x|y;
     55     int now=++sgt_num;
     56     Segt[now].ls=Merge(Segt[x].ls,Segt[y].ls);
     57     Segt[now].rs=Merge(Segt[x].rs,Segt[y].rs);
     58     Segt[now].val=Segt[x].val+Segt[y].val;
     59     return now;
     60 }
     61 
     62 int Query(int now,int l,int r,int l1,int r1)
     63 {
     64     if (!now) return 0;
     65     if (l>r1 || r<l1) return 0;
     66     if (l1<=l && r<=r1) return Segt[now].val;
     67     int mid=(l+r)>>1;
     68     return Query(Segt[now].ls,l,mid,l1,r1)+Query(Segt[now].rs,mid+1,r,l1,r1);
     69 }
     70 
     71 void DFS(int x)
     72 {
     73     if (pos[x]) Update(Root[x],1,n,pos[x]);
     74     for (int i=head[x]; i; i=edge[i].next)
     75     {
     76         DFS(edge[i].to);
     77         Root[x]=Merge(Root[x],Root[edge[i].to]);
     78     }
     79 }
     80 
     81 void DP(int x)
     82 {
     83     for (int i=head[x]; i; i=edge[i].next)
     84     {
     85         int y=edge[i].to;
     86         if (x==1) f[y]=1, top[y]=y;
     87         else if (Query(Root[top[x]],1,n,pos[y]-step[y]+step[top[x]],pos[y]-1))
     88             f[y]=f[x]+1, top[y]=y;
     89         else f[y]=f[x], top[y]=top[x];
     90         DP(edge[i].to);
     91         ans=max(ans,f[edge[i].to]);
     92     }
     93 }
     94 
     95 int main()
     96 {
     97     scanf("%d%s",&n,s);
     98     for (int i=0; i<n; ++i) Insert(s[i]-'a',i+1);
     99     for (int i=2; i<=cnt; ++i) add(fa[i],i);
    100     DFS(1); DP(1);
    101     printf("%d
    ",ans);
    102 }
  • 相关阅读:
    搭建个人Spring-Initializr服务器
    “不蒜子”统计总访问人数脚本
    基于Hazelcast及Kafka实现的分布式锁与集群负载均衡
    虚拟机部署hadoop集群
    程序员、黑客及开发者之间的区别
    今日校园自动登录教程
    逆向DES算法
    来自穷逼对HttpCanary的蹂躏
    今日校园提交签到和查寝-Java实现
    JS 判断数据类型方法
  • 原文地址:https://www.cnblogs.com/refun/p/10295294.html
Copyright © 2020-2023  润新知