• TensorFlow目标检测(object_detection)api使用


    请根据 models/blob/master/research/object_detection/g3doc/ 目录下的 installation.md 配置好你的环境

    环境搭建可参考:基于win10,GPU的Tensorflow Object Detection API部署及USB摄像头目标检测

    1. 测试opencv调用usb,c++和python两个版本

    在Ubuntu16.04安装OpenCV3.1并实现USB摄像头图像采集

    import cv2
    cv2.namedWindow('testcamera', cv2.WINDOW_NORMAL)
    
    capture = cv2.VideoCapture(0)
    print (capture.isOpened())
    num = 0
    
    while 1:
      ret, img = capture.read()
      cv2.imshow('testcamera', img)
      key = cv2.waitKey(1)
      num += 1
      if key==1048603:#<ESC>
        break
    
    capture.release()
    cv2.destroyAllWindows()
    #include <opencv2/core/core.hpp>    
    #include <opencv2/highgui/highgui.hpp>    
    using namespace cv;  
          
    int main(int argc, char** argv) {
        cvNamedWindow("视频");
    
        CvCapture* capture = cvCreateCameraCapture(-1);
        IplImage* frame;
    
        while(1) {
            frame = cvQueryFrame(capture);
            if(!frame) break;
            cvShowImage("视频", frame);
    
            char c = cvWaitKey(50);
            if(c==27) break;
        }
    
        cvReleaseCapture(&capture);
        cvDestroyWindow("视频");
        return 0;
    }

    2. GPU的Tensorflow Object Detection API部署及USB摄像头目标检测

    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    import tensorflow as tf
    import zipfile
    import cv2
    import time  
    
    from collections import defaultdict
    from io import StringIO
    from matplotlib import pyplot as plt
    from PIL import Image
    
    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    
    from utils import label_map_util
    from utils import visualization_utils as vis_util
    
    # What model to download.
    MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
    #MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017'
    #MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
    MODEL_FILE = MODEL_NAME + '.tar.gz'
    
    # Path to frozen detection graph. This is the actual model that is used for the object detection.
    PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
    
    # List of the strings that is used to add correct label for each box.
    PATH_TO_LABELS = os.path.join('/home/dsp/ranjiewen/tensorflow_models/models/research/object_detection/data', 'mscoco_label_map.pbtxt')
    
    #extract the ssd_mobilenet
    start = time.clock()
    NUM_CLASSES = 90
    opener = urllib.request.URLopener()
    #opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
    tar_file = tarfile.open(MODEL_FILE)
    for file in tar_file.getmembers():
      file_name = os.path.basename(file.name)
      if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())
    end= time.clock()
    print ('load the model',(end-start))
    
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    
    cap = cv2.VideoCapture(0)
    print (cap.isOpened())
    with detection_graph.as_default():
      with tf.Session(graph=detection_graph) as sess:
          writer = tf.summary.FileWriter("logs/", sess.graph)  
          sess.run(tf.global_variables_initializer())  
          
          while(1):
            
            print("-------")
            ret, frame = cap.read()
            start = time.clock()
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
            image_np=frame
            # the array based representation of the image will be used later in order to prepare the
            # result image with boxes and labels on it.
            # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Each box represents a part of the image where a particular object was detected.
            boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            scores = detection_graph.get_tensor_by_name('detection_scores:0')
            classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
            # Actual detection.
            (boxes, scores, classes, num_detections) = sess.run(
              [boxes, scores, classes, num_detections],
              feed_dict={image_tensor: image_np_expanded})
            # Visualization of the results of a detection.
            vis_util.visualize_boxes_and_labels_on_image_array(
              image_np,
              np.squeeze(boxes),
              np.squeeze(classes).astype(np.int32),
              np.squeeze(scores),
              category_index,
              use_normalized_coordinates=True,
              line_thickness=6)
            end = time.clock()  
            print ('frame fps:',1.0/(end - start))
            #print 'frame:',time.time() - start
            cv2.imshow("capture", image_np)
            cv2.waitKey(1)
    cap.release()
    cv2.destroyAllWindows() 

     - 速度感觉还可以 。。。

  • 相关阅读:
    子序列自动机学习笔记
    P4709 信息传递 解题报告
    斯坦纳树学习笔记
    NOIP2021 游记
    P5206 [WC2019]数树 解题报告
    CF1205D Almost All 解题报告
    设计模式原来如此策略模式(Strategy Pattern)
    再次站起,继续开博
    Java原来如此反射机制
    Java原来如此随机数
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/8998235.html
Copyright © 2020-2023  润新知