• pytorch中检测分割模型中图像预处理探究


    - 主要探究检测分割模型数据增强操作有哪些?

    - 检测分割模型图像输入大小?检测模型Faster rcnn输入较大800+;而ssd则有300,512之分;分割模型一般deeplab使用321,513,769等;输入大小对结果敏感吗?

    - 检测分割模型的batch-szie都比较小;这对显存消耗很大,和输入大小的关系?本身分割模型deeplab系列就有空洞卷积,显存消耗就大了;

    检测模型

    - 统计数据集RGB通道的均值;减均值;

    - 尺度缩放,这样进行的缩放不会造成图像形变;

    - 像素填充32倍整数;

    - 另外检测模型中的数据增强方法?一般采用什么,主要是针对ann(bounding box不好操作吧!)

    其中还可以采取第三步,将图片的宽和高扩展为32的整倍数,正如在Retinanet使用的。下面是一个简单的Pytorch数据预处理模块:

    class Resizer():
        def __call__(self, sample, targetSize=608, maxSize=1024, pad_N=32):
            image, anns = sample['img'], sample['ann']
            rows, cols = image.shape[:2]
            
            smaller_size, larger_size = min(rows, cols), max(rows, cols)
            scale = targetSize / smaller_size
            if larger_size * scale > maxSize:
                scale = maxSize / larger_size
            image = skimage.transform.resize(image, (int(round(rows*scale)), 
                                                     int(round(cols*scale))), 
                                             mode='constant')
            rows, cols, cns = image.shape[:3]
            
            pad_w, pad_h = (pad_N - cols % pad_N), (pad_N - rows % pad_N)
            new_image = np.zeros((rows + pad_h, cols + pad_w, cns)).astype(np.float32)
            new_image[:rows, :cols, :] = image.astype(np.float32)
            
            anns[:, :4] *= scale
            return {'img': torch.from_numpy(new_image), 
                    'ann':torch.from_numpy(anns),
                    'scale':scale}

    分割模型

     - 分割模型对数据增强的处理!

    - https://github.com/hualin95/Deeplab-v3plus/blob/master/datasets/cityscapes_Dataset.py

    def __getitem__(self, item):
            id = self.items[item]
            filename = id.split("train_")[-1].split("val_")[-1]
            image_filepath = os.path.join(self.image_filepath, id.split("_")[0], id.split("_")[1])
            image_filename = filename + "_leftImg8bit.png"
            image_path = os.path.join(image_filepath, image_filename)
            image = Image.open(image_path).convert("RGB")
    
            if self.split == "test":
                return self._test_transform(image), filename
    
            gt_filepath = os.path.join(self.gt_filepath, id.split("_")[0], id.split("_")[1])
            gt_filename = filename + "_gtFine_labelIds.png"
            gt_image_path = os.path.join(gt_filepath, gt_filename)
            gt_image = Image.open(gt_image_path)
    
            if self.split == "train" or self.split == "trainval":
                image, gt_image = self._train_sync_transform(image, gt_image)
            else:
                image, gt_image = self._val_sync_transform(image, gt_image,filename)
            # print(filename)
            return image, gt_image, filename
    
        def _train_sync_transform(self, img, mask):
            '''
            :param image:  PIL input image
            :param gt_image: PIL input gt_image
            :return:
            '''
            # random mirror
            if random.random() < 0.5:
                img = img.transpose(Image.FLIP_LEFT_RIGHT)
                mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
            crop_size = self.crop_size
            # random scale (short edge)
            short_size = random.randint(int(self.base_size * 0.5), int(self.base_size * 2.0))
            w, h = img.size
            if h > w:
                ow = short_size
                oh = int(1.0 * h * ow / w)
            else:
                oh = short_size
                ow = int(1.0 * w * oh / h)
            img = img.resize((ow, oh), Image.BILINEAR)
            mask = mask.resize((ow, oh), Image.NEAREST)
            # pad crop
            if short_size < crop_size:
                padh = crop_size - oh if oh < crop_size else 0
                padw = crop_size - ow if ow < crop_size else 0
                img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)
                mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=0)
            # random crop crop_size
            w, h = img.size
            x1 = random.randint(0, w - crop_size)
            y1 = random.randint(0, h - crop_size)
            img = img.crop((x1, y1, x1 + crop_size, y1 + crop_size))
            mask = mask.crop((x1, y1, x1 + crop_size, y1 + crop_size))
            # gaussian blur as in PSP
            if random.random() < 0.5:
                img = img.filter(ImageFilter.GaussianBlur(
                    radius=random.random()))
            # final transform
            img, mask = self._img_transform(img), self._mask_transform(mask)
            return img, mask
    
        def _val_sync_transform(self, img, mask,filename=None):
            outsize = self.crop_size
            short_size = outsize
            w, h = img.size
            if w > h:
                oh = short_size
                ow = int(1.0 * w * oh / h)
            else:
                ow = short_size
                oh = int(1.0 * h * ow / w)
            img = img.resize((ow, oh), Image.BILINEAR)
            mask = mask.resize((ow, oh), Image.NEAREST)
            # center crop
            w, h = img.size
            x1 = int(round((w - outsize) / 2.))
            y1 = int(round((h - outsize) / 2.))
            img = img.crop((x1, y1, x1 + outsize, y1 + outsize))
            mask = mask.crop((x1, y1, x1 + outsize, y1 + outsize))
            # final transform
            img, mask = self._img_transform(img), self._mask_transform(mask,filename)
            return img, mask
    
        def _test_transform(self, img):
            outsize = self.crop_size
            short_size = outsize
            w, h = img.size
            if w > h:
                oh = short_size
                ow = int(1.0 * w * oh / h)
            else:
                ow = short_size
                oh = int(1.0 * h * ow / w)
            img = img.resize((ow, oh), Image.BILINEAR)
            # center crop
            w, h = img.size
            x1 = int(round((w - outsize) / 2.))
            y1 = int(round((h - outsize) / 2.))
            img = img.crop((x1, y1, x1 + outsize, y1 + outsize))
            # final transform
            img = self._img_transform(img)
            return img
    
        def _img_transform(self, image):
            image_transforms = ttransforms.Compose([
                ttransforms.ToTensor(),
                ttransforms.Normalize([.485, .456, .406], [.229, .224, .225]),
            ])
            image = image_transforms(image)
            return image
    
        def _mask_transform(self, gt_image,filename=None):
            target = self._class_to_index(np.array(gt_image).astype('int32'),filename)
            target = torch.from_numpy(target)
    
            return target
    
        def __len__(self):
            return len(self.items)

    - 读取图使用PIL,因此需要转为RGB通道顺序;

    - 需要对img,mask都进行数据增强操作;

    - https://github.com/kazuto1011/deeplab-pytorch/blob/master/libs/datasets/cocostuff.py

        def __getitem__(self, index):
            if self.preload:
                image, label = self.images[index], self.labels[index]
            else:
                image_id = self.files[index]
                image, label = self._load_data(image_id)
            image, label = self._transform(image, label)
            return image.astype(np.float32), label.astype(np.int64)
    
        def _load_data(self, image_id):
            # Set paths
            image_path = osp.join(self.root, "images", image_id + ".jpg")
            label_path = osp.join(self.root, "annotations", image_id + ".mat")
            # Load an image
            image = cv2.imread(image_path, cv2.IMREAD_COLOR).astype(np.float32)
            # Load a label map
            if self.version == "1.1":
                label = sio.loadmat(label_path)["S"].astype(np.int64)
                label -= 1  # unlabeled (0 -> -1)
            elif self.version == "1.0":
                label = np.array(h5py.File(label_path, "r")["S"], dtype=np.int64)
                label = label.transpose(1, 0)
                label -= 2  # unlabeled (1 -> -1)
            else:
                raise NotImplementedError(
                    "1.0 or 1.1 expected, but got: {}".format(self.version)
                )
            return image, label
    
        def _transform(self, image, label):
            # Mean subtraction
            image -= self.mean
            # Pre-scaling
            if self.warp:
                base_size = (self.base_size,) * 2
            else:
                raw_h, raw_w = label.shape
                if raw_h > raw_w:
                    base_size = (int(self.base_size * raw_w / raw_h), self.base_size)
                else:
                    base_size = (self.base_size, int(self.base_size * raw_h / raw_w))
            image = cv2.resize(image, base_size, interpolation=cv2.INTER_LINEAR)
            label = cv2.resize(label, base_size, interpolation=cv2.INTER_NEAREST)
            if self.scale is not None:
                # Scaling
                scale_factor = random.choice(self.scale)
                scale_kwargs = {"dsize": None, "fx": scale_factor, "fy": scale_factor}
                image = cv2.resize(image, interpolation=cv2.INTER_LINEAR, **scale_kwargs)
                label = cv2.resize(label, interpolation=cv2.INTER_NEAREST, **scale_kwargs)
                scale_h, scale_w = label.shape
                # Padding
                pad_h = max(max(base_size[1], self.crop_size) - scale_h, 0)
                pad_w = max(max(base_size[0], self.crop_size) - scale_w, 0)
                pad_kwargs = {
                    "top": 0,
                    "bottom": pad_h,
                    "left": 0,
                    "right": pad_w,
                    "borderType": cv2.BORDER_CONSTANT,
                }
                if pad_h > 0 or pad_w > 0:
                    image = cv2.copyMakeBorder(image, value=(0.0, 0.0, 0.0), **pad_kwargs)
                    label = cv2.copyMakeBorder(label, value=self.ignore_label, **pad_kwargs)
                # Random cropping
                base_h, base_w = label.shape
                start_h = random.randint(0, base_h - self.crop_size)
                start_w = random.randint(0, base_w - self.crop_size)
                end_h = start_h + self.crop_size
                end_w = start_w + self.crop_size
                image = image[start_h:end_h, start_w:end_w]
                label = label[start_h:end_h, start_w:end_w]
            if self.flip:
                # Random flipping
                if random.random() < 0.5:
                    image = np.fliplr(image).copy()  # HWC
                    label = np.fliplr(label).copy()  # HW
            # HWC -> CHW
            image = image.transpose(2, 0, 1)
            return image, label

    - 使用opencv进行读图;

    - 都没有进行随机翻转操作,可能对旋转后会产生黑色区域;

    - 针对这些问题:在以后的实际项目中注意操作用法,训练网络,查看实际数据增强对任务的提升效果!!!

  • 相关阅读:
    Java三年经验
    系统集成项目管理 - 笔记
    ZK
    older versions of the JRE and JDK
    [提高组集训2021] 古老的序列问题
    CF1556G Gates to Another World
    Codeforces Round #743 (Div. 1)
    [提高组集训2021] 蚂蚁
    [LOJ 6669] Nauuo and Binary Tree
    [ABC219H] Candles
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/10136262.html
Copyright © 2020-2023  润新知