• tensorflow语义分割api使用(deeplab训练cityscapes)


     遇到的坑:

    1. 环境:

    - tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+py3.5

    - 使用最新的tensorflow1.12或者1.10都不行,报错:报错不造卷积算法(convolution algorithm...)

    2. 数据集转换

    # Exit immediately if a command exits with a non-zero status.
    set -e
    
    CURRENT_DIR=$(pwd)
    WORK_DIR="."
    
    # Root path for Cityscapes dataset.
    CITYSCAPES_ROOT="${WORK_DIR}/cityscapes"
    
    # Create training labels.
    python "${CITYSCAPES_ROOT}/cityscapesscripts/preparation/createTrainIdLabelImgs.py"
    
    # Build TFRecords of the dataset.
    # First, create output directory for storing TFRecords.
    OUTPUT_DIR="${CITYSCAPES_ROOT}/tfrecord"
    mkdir -p "${OUTPUT_DIR}"
    
    BUILD_SCRIPT="${CURRENT_DIR}/build_cityscapes_data.py"
    
    echo "Converting Cityscapes dataset..."
    python "${BUILD_SCRIPT}" 
      --cityscapes_root="${CITYSCAPES_ROOT}" 
      --output_dir="${OUTPUT_DIR}" 

    - 首先当前conda环境下安装cityscapesScripts模块,要支持py3.5才行;

    - 由于cityscapesscripts/preparation/createTrainIdLabelImgs.py里面默认会把数据集gtFine下面的test,train,val文件夹json文件都转为TrainIdlandelImgs.png;然而在test文件下有很多json文件编码格式是错误的,大约十几张,每次报错,然后将其剔除!!!

    - 然后执行build_cityscapes_data.py将img,lable转换为tfrecord格式。

    3. 训练cityscapes代码

    - 将训练代码写成脚本文件:train_deeplab_cityscapes.sh

    #!/bin/bash
    
    # CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco
    
    
    PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt'
    PATH_TO_TRAIN_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
    PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
    WORK_DIR='/home/rjw/tf-models/research/deeplab'
    
    # From tensorflow/models/research/
    python "${WORK_DIR}"/train.py 
        --logtostderr 
        --training_number_of_steps=40000 
        --train_split="train" 
        --model_variant="xception_65" 
        --atrous_rates=6 
        --atrous_rates=12 
        --atrous_rates=18 
        --output_stride=16 
        --decoder_output_stride=4 
        --train_crop_size=513 
        --train_crop_size=513 
        --train_batch_size=1 
        --fine_tune_batch_norm=False 
        --dataset="cityscapes" 
        --tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} 
        --train_logdir=${PATH_TO_TRAIN_DIR} 
        --dataset_dir=${PATH_TO_DATASET}

     参数分析:
        training_number_of_steps: 训练迭代次数;
        train_crop_size:训练图片的裁剪大小,因为我的GPU只有8G,故我将这个设置为513了;
        train_batch_size: 训练的batchsize,也是因为硬件条件,故保持1;
        fine_tune_batch_norm=False :是否使用batch_norm,官方建议,如果训练的batch_size小于12的话,须将该参数设置为False,这个设置很重要,否则的话训练时会在2000步左右报错
        tf_initial_checkpoint:预训练的初始checkpoint,这里设置的即是前面下载的../research/deeplab/backbone/deeplabv3_cityscapes_train/model.ckpt.index
        train_logdir: 保存训练权重的目录,注意在开始的创建工程目录的时候就创建了,这里设置为"../research/deeplab/exp/train_on_train_set/train/"
        dataset_dir:数据集的地址,前面创建的TFRecords目录。这里设置为"../dataset/cityscapes/tfrecord"

    4.验证测试

    - 验证脚本:

    #!/bin/bash
    
    # CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco
    
    PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/'
    PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
    PATH_TO_EVAL_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/eval/'
    PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
    WORK_DIR='/home/rjw/tf-models/research/deeplab'
    
    # From tensorflow/models/research/
    python "${WORK_DIR}"/eval.py 
        --logtostderr 
        --eval_split="val" 
        --model_variant="xception_65" 
        --atrous_rates=6 
        --atrous_rates=12 
        --atrous_rates=18 
        --output_stride=16 
        --decoder_output_stride=4 
        --eval_crop_size=1025 
        --eval_crop_size=2049 
        --dataset="cityscapes" 
        --checkpoint_dir=${PATH_TO_INITIAL_CHECKPOINT} 
        --eval_logdir=${PATH_TO_EVAL_DIR} 
        --dataset_dir=${PATH_TO_DATASET}

    - rusult:model.ckpt-40000为在初始化模型上训练40000次迭代的模型;后面用初始化模型测试miou_1.0还是很低,不知道是不是有什么参数设置的问题!!!

    - 注意,如果使用官方提供的checkpoint,压缩包中是没有checkpoint文件的,需要手动添加一个checkpoint文件;初始化模型中是没有提供chekpoint文件的。

    INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/model.ckpt-40000
    INFO:tensorflow:Running local_init_op.
    INFO:tensorflow:Done running local_init_op.
    INFO:tensorflow:Starting evaluation at 2018-12-18-07:13:08
    INFO:tensorflow:Evaluation [50/500]
    INFO:tensorflow:Evaluation [100/500]
    INFO:tensorflow:Evaluation [150/500]
    INFO:tensorflow:Evaluation [200/500]
    INFO:tensorflow:Evaluation [250/500]
    INFO:tensorflow:Evaluation [300/500]
    INFO:tensorflow:Evaluation [350/500]
    INFO:tensorflow:Evaluation [400/500]
    INFO:tensorflow:Evaluation [450/500]
    miou_1.0[0.478293568]
    INFO:tensorflow:Waiting for new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/
    INFO:tensorflow:Found new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
    INFO:tensorflow:Graph was finalized.
    2018-12-18 15:18:05.210957: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0
    2018-12-18 15:18:05.211047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
    2018-12-18 15:18:05.211077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929]      0 
    2018-12-18 15:18:05.211100: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0:   N 
    2018-12-18 15:18:05.211645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9404 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
    INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
    INFO:tensorflow:Running local_init_op.
    INFO:tensorflow:Done running local_init_op.
    INFO:tensorflow:Starting evaluation at 2018-12-18-07:18:06
    INFO:tensorflow:Evaluation [50/500]
    INFO:tensorflow:Evaluation [100/500]
    INFO:tensorflow:Evaluation [150/500]
    INFO:tensorflow:Evaluation [200/500]
    INFO:tensorflow:Evaluation [250/500]
    INFO:tensorflow:Evaluation [300/500]
    INFO:tensorflow:Evaluation [350/500]
    INFO:tensorflow:Evaluation [400/500]
    INFO:tensorflow:Evaluation [450/500]
    miou_1.0[0.496331513]

    5.可视化测试

    - 在vis目录下生成分割结果图

    #!/bin/bash
    
    # CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco
    
    
    PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
    PATH_TO_VIS_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/vis/'
    PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
    WORK_DIR='/home/rjw/tf-models/research/deeplab'
    
    
    # From tensorflow/models/research/
    python "${WORK_DIR}"/vis.py 
        --logtostderr 
        --vis_split="val" 
        --model_variant="xception_65" 
        --atrous_rates=6 
        --atrous_rates=12 
        --atrous_rates=18 
        --output_stride=16 
        --decoder_output_stride=4 
        --vis_crop_size=1025 
        --vis_crop_size=2049 
        --dataset="cityscapes" 
        --colormap_type="cityscapes" 
        --checkpoint_dir=${PATH_TO_CHECKPOINT} 
        --vis_logdir=${PATH_TO_VIS_DIR} 
        --dataset_dir=${PATH_TO_DATASET}

    reference:

  • 相关阅读:
    个人作业二-举例分析流程图与活动图的区别与联系
    四则运算
    实验四 决策树算法及应用
    实验三 朴素贝叶斯算法及应用
    实验二 K-近邻算法及应用
    实验一 感知器及其应用
    实验三 面向对象分析与设计
    实验二 结构化分析与设计
    实验一 软件开发文档与工具的安装与使用
    ATM管理系统
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/10134108.html
Copyright © 2020-2023  润新知