| 博客班级 | AHPU-机器学习-计算机18级 |
| ---- | ---- | ---- |
| 实验要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085
|学号|3180701232|
一.实验目的
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
二.实验内容
1.实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
三.实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
四.实验结果
源代码
朴素贝叶斯.
#导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
2.
# data
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
data = np.array(df.iloc[:100, :])
print(data)
return data[:,:-1], data[:,-1]
3.
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
4.
部分截图
![](https://img2020.cnblogs.com/blog/2205429/202106/2205429-20210627205942735-496119680.png)
5.
#测试
X_test[0], y_test[0]
6.
结果:
(array([5.6, 3. , 4.5, 1.5]), 1.0)
高斯贝叶斯
7.
#GaussianNB 高斯朴素贝叶斯,特征的可能性被假设为高斯
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod
def mean(X):
return sum(X) / float(len(X))
# 标准差(方差)
def stdev(self, X):
avg = self.mean(X)
return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2))))
return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
# 处理X_train
def summarize(self, train_data):
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
return summaries
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label: [] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {label: self.summarize(value)for label, value in data.items()}
return 'gaussianNB train done!'
# 计算概率
def calculate_probabilities(self, input_data):
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
return probabilities
# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1])[-1][0]
return label
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
8.
model = NaiveBayes()#生成一个算法对象
model.fit(X_train, y_train)#将训练数据代入算法中
9.
结果:'gaussianNB train done!'
10.
print(model.predict([4.4, 3.2, 1.3, 0.2]))
结果:0.0
scikit-learn实例
11.
#生成scikit-learn结果与上面手写函数的结果对比
from sklearn.naive_bayes import GaussianNB #导入模型
clf = GaussianNB()
clf.fit(X_train, y_train)#训练数据
12.
结果:GaussianNB(priors=None, var_smoothing=1e-09)
13.
clf.score(X_test, y_test)
14.
结果:1.0
15.
clf.predict([[4.4, 3.2, 1.3, 0.2]])
16.
结果:array([0.])
五.实验小结
通过本次实验我理解了朴素贝叶斯算法原理,掌握了朴素贝叶斯算法框架,掌握了常见的高斯模型,多项式模型和伯努利模型,能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法,针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。