• 进程同步multiprocess.Lock


    进程同步multiprocess.Lock

    我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题:当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。

    一、多进程抢占输出资源

    import os
    import time
    import random
    from multiprocessing import Process
    
    def work(n):
        print('%s: %s is running' %(n,os.getpid()))
        time.sleep(random.random())
        print('%s:%s is done' %(n,os.getpid()))
    
    if __name__ == '__main__':
        for i in range(3):
            p=Process(target=work,args=(i,))
            p.start()
    

    0: 46160 is done
    1: 56236 is running
    0: 46160 is running
    2: 53824 is running
    1: 56236 is done
    2: 53824 is done

    二、使用锁维护执行顺序

    import os
    import time
    import random
    from multiprocessing import Process,Lock
    
    def work(lock,n):
        lock.acquire() # 锁住
        print('%s: %s is running' % (n, os.getpid()))
        time.sleep(random.random())
        print('%s: %s is done' % (n, os.getpid()))
        lock.release()  # 释放锁头
    if __name__ == '__main__':
        lock=Lock()  # 写在主进程是为了让子进程拿到同一把锁.
        for i in range(3):
            p=Process(target=work,args=(lock,i))
            p.start()
            # p.join() 
    """
     进程锁 是把锁住的代码变成了串行
     join 是把所有的子进程变成了串行
     为了保证数据的安全,串行牺牲掉效率.
    """
    

    0: 46160 is running
    0: 46160 is done
    1: 56236 is running
    1: 56236 is done
    2: 53824 is running
    2: 53824 is done

    上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。接下来,我们以模拟抢票为例,来看看数据安全的重要性。

    三、多进程同时抢购余票

    # 文件db的内容为:{"count":1}
    # 注意一定要用双引号,不然json无法识别
    # 并发运行,效率高,但竞争写同一文件,数据写入错乱
    from multiprocessing import Process,Lock
    import time,json,random
    def search():
        dic=json.load(open('db'))
        print('剩余票数%s' %dic['count'])
    
    def get():
        dic=json.load(open('db'))
        time.sleep(0.1)  # 模拟读数据的网络延迟
        if dic['count'] >0:
            dic['count']-=1
            time.sleep(0.2)  # 模拟写数据的网络延迟
            json.dump(dic,open('db','w'))
            print('购票成功')
    
    def task():
        search()
        get()
    
    if __name__ == '__main__':
        for i in range(10):  # 模拟并发100个客户端抢票
            p=Process(target=task)
            p.start()
    

    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    剩余票数3
    购票成功
    购票成功
    购票成功
    购票成功
    购票成功
    购票成功
    购票成功
    购票成功
    购票成功
    购票成功

    四、使用锁来保证数据安全

    # 文件db的内容为:{"count":2}
    # 注意一定要用双引号,不然json无法识别
    # 并发运行,效率高,但竞争写同一文件,数据写入错乱
    from multiprocessing import Process,Lock
    import time,json,random
    def search():
        dic=json.load(open('db'))
        print('剩余票数%s' %dic['count'])
    
    def get():
        dic=json.load(open('db'))
        time.sleep(random.random())  # 模拟读数据的网络延迟
        if dic['count'] >0:
            dic['count']-=1
            time.sleep(random.random())  # 模拟写数据的网络延迟
            json.dump(dic,open('db','w'))
            print('购票成功')
        else:
            print('购票失败')
    
    def task(lock):
        search()
        lock.acquire()
        get()
        lock.release()
    
    if __name__ == '__main__':
        lock = Lock()
        for i in range(100):  # 模拟并发100个客户端抢票
            p=Process(target=task,args=(lock,))
            p.start()
    

    剩余票数2
    剩余票数2
    剩余票数2
    剩余票数2
    剩余票数2
    购票成功
    购票成功
    购票失败
    购票失败
    购票失败

    加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。

    虽然可以用文件共享数据实现进程间通信,但问题是:

    1. 效率低(共享数据基于文件,而文件是硬盘上的数据)
    2. 需要自己加锁处理

    因此我们最好找寻一种解决方案能够兼顾:

    1. 效率高(多个进程共享一块内存的数据)
    2. 帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。

    队列和管道都是将数据存放于内存中,队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

    在当下的阶段,必将由程序员来主导,甚至比以往更甚。
  • 相关阅读:
    Contest (树状数组求逆序对)
    树状数组
    unity3D 笔记 (NENE QUEST 制作中用到的函数)
    Ubuntu 安装gnome桌面及vnc远程连接
    Pillow图像处理
    室内场景数据集
    PyTorch踩坑笔记
    进一步了解pip
    一些概念
    损失函数及评价指标
  • 原文地址:https://www.cnblogs.com/randysun/p/11529170.html
Copyright © 2020-2023  润新知