• uva 11396 二分图判定


    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<vector>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<map>
    #include<stack>
    
    using namespace std;
    
    #define LL long long
    #define UINT unsigned int
    #define MAX_INT 0x7fffffff
    #define cint const int
    
    #define MAXN 333
    vector<int> g[MAXN];
    int n, col[MAXN];
    
    bool dfs(int u, int color){
        col[u] = color;
        for(int i=0; i<g[u].size(); i++){
            int v = g[u][i];
            if(col[v]==col[u] || !col[v]&&!dfs(v, 3-color))
                return false;
        }
        return true;
    }
    
    int main(){
    //    freopen("C:\Users\Administrator\Desktop\in.txt","r",stdin);
        while(scanf(" %d", &n)==1 && n){
            int i, u, v;
            for(i=1; i<=n; i++) g[i].clear();
            while(scanf(" %d %d", &u, &v)==2){
                if(!v) break;
                g[u].push_back(v);
                g[v].push_back(u);
            }
            fill_n(col+1, n, 0);
            for(i=1; i<=n; i++) if(!col[i])
                if(!dfs(i, 1)) break;
            if(i<=n) printf("NO
    ");
            else printf("YES
    ");
        }
        return 0;
    }
    

    Problem B
    Claw Decomposition

    Input: Standard Input

    Output: Standard Output

    A claw is defined as a pointed curved nail on the end of each toe in birds, some reptiles, and some mammals. However, if you are a graph theory enthusiast, you may understand the following special class of graph as shown in the following figure by the word claw.

    If you are more concerned about graph theory terminology, you may want to define claw as K1,3.

    Let’s leave the definition for the moment & come to the problem. You are given a simple undirected graph in which every vertex has degree 3. You are to figure out whether the graph can be decomposed into claws or not.

    Just for the sake of clarity, a decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

    Input

    There will be several cases in the input file. Each case starts with the number of vertices in the graph, V (4<=V<=300). This is followed by a list of edges. Every line in the list has two integers, a & b, the endpoints of an edge (1<=a,b<=V). The edge list ends with a line with a pair of 0. The end of input is denoted by a case with V=0. This case should not be processed.

    Output

     

    For every case in the input, print YES if the graph can be decomposed into claws & NO otherwise.

    Sample Input                                                  Output for Sample Input

    4

    1 2

    1 3

    1 4

    2 3

    2 4

    3 4

    0 0

    6

    1 2

    1 3

    1 6

    2 3

    2 5

    3 4

    4 5

    4 6

    5 6

    0 0

    0

    NO

    NO


    Problemsetter: Mohammad Mahmudur Rahman

    Special Thanks to: Manzurur Rahman Khan

     

    参考:http://blog.csdn.net/wiking__acm/article/details/8739684

    。。。。题意都不大懂,先挖个坑。。。虽然A了。。。
  • 相关阅读:
    漫话JavaScript与异步·第三话——Generator:化异步为同步
    HTTPS、证书与使用Charles抓包
    【前端基础】动态脚本与JSONP
    前端十万个为什么(之一):我们为什么需要npm?
    一个前端程序员的费曼技巧练习
    漫话JavaScript与异步·第二话——Promise:一诺千金
    漫话JavaScript与异步·第一话——异步:何处惹尘埃
    Flex:CSS3布局利器
    BFC探秘
    虚机的部分操作
  • 原文地址:https://www.cnblogs.com/ramanujan/p/3378705.html
Copyright © 2020-2023  润新知