\(\mathscr{Description}\)
Link.
维护一棵树,初始时树空。接下来 \(n\) 次操作,每次操作加入一片叶子 \(u\),\(u\) 到其邻接点的边权为 \(w\),\(u\) 的半径为 \(r_u\)。每次加入结点后,求出 \(\sum_{u<v}[r_u+r_v\ge\operatorname{dist}(u,v)]\) 的值。强制在线。
\(n\le10^5\)。
\(\mathscr{Solution}\)
初学 OI 的时候,第一次听说所谓“超级难写的毒瘤题”就是《紫荆花之恋》,后来每次向尝试也不知道为什么都咕掉了。这几天抽空写了一发却发现……这种码量顶多叫难写,写出来也没啥新奇了。还是挺感慨。(
显然答案可以随着树的变化维护增量。考虑在一棵静态的树上,对于固定的 \(x\),如何快速求出 \(\sum_{u\neq x}[r_u+r_x\ge\operatorname{dist}(u,x)]\)——要说“维护”这一值,那么可以点分树套平衡树维护。注意本题得用小常数的平衡树(例如替罪羊树)。
怎么动态维护点分树树形?也可以像替罪羊一样,发现子树不平衡就点分治重构。总复杂度套用替罪羊的证明可知为 \(\mathcal O(n\log^2 n)\)。
\(\mathscr{Code}\)
巨大常数,代码就自己写嘛 qwq。
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
typedef long long LL;
inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && (q = buf + fread(p = buf, 1, 1 << 17, stdin), p == q) ?
EOF : *p++;
}
template <typename Tp = int>
inline Tp rint() {
Tp x = 0, s = fgc(), f = 1;
for (; s < '0' || '9' < s; s = fgc()) f = s == '-' ? -f : f;
for (; '0' <= s && s <= '9'; s = fgc()) x = x * 10 + (s ^ '0');
return x * f;
}
template <typename Tp>
inline void wint(Tp x) {
if (x < 0) putchar('-'), x = -x;
if (9 < x) wint(x / 10);
putchar(x % 10 ^ '0');
}
template <typename Tp>
inline void chkmin(Tp& u, const Tp& v) { v < u && (u = v, 0); }
template <typename Tp>
inline void chkmax(Tp& u, const Tp& v) { u < v && (u = v, 0); }
template <typename Tp>
inline Tp imin(const Tp& u, const Tp& v) { return u < v ? u : v; }
template <typename Tp>
inline Tp imax(const Tp& u, const Tp& v) { return u < v ? v : u; }
const int MAXN = 1e5;
const double LUCK = 0.712;
// const double LUCK = 1.;
int n;
class ScapegoatTree {
private:
static const int MAXND = 8e6;
int node, ch[MAXND][2], siz[MAXND];
LL val[MAXND];
int cnt[MAXND], sum[MAXND], rcyc[MAXND];
inline int newnd() {
int u = rcyc[0] ? rcyc[rcyc[0]--] : ++node;
ch[u][0] = ch[u][1] = val[u] = 0, cnt[u] = sum[u] = siz[u] = 1;
return u;
}
inline void pushup(const int u) {
siz[u] = siz[ch[u][0]] + siz[ch[u][1]] + 1;
sum[u] = sum[ch[u][0]] + sum[ch[u][1]] + cnt[u];
}
inline bool valid(const int u) {
return imax(siz[ch[u][0]], siz[ch[u][1]]) <= siz[u] * LUCK + 5;
}
inline void collect(const int u, int*& idx) {
if (!u) return ;
collect(ch[u][0], idx), *idx++ = u, collect(ch[u][1], idx);
}
inline int rebuild(const int* buc, const int l, const int r) {
if (l > r) return 0;
int mid = l + r >> 1, u = buc[mid];
ch[u][0] = rebuild(buc, l, mid - 1);
ch[u][1] = rebuild(buc, mid + 1, r);
return pushup(u), u;
}
inline void balance(int& u) {
if (valid(u)) return ;
static int buc[MAXN + 5], *idx;
collect(u, idx = buc), u = rebuild(buc, 0, idx - buc - 1);
}
public:
inline void recycle(const int u) {
if (!u) return ;
rcyc[++rcyc[0]] = u;
recycle(ch[u][0]), recycle(ch[u][1]);
}
inline void insert(int& u, const LL x) {
if (!u) return u = newnd(), val[u] = x, void();
balance(u);
if (val[u] == x) return ++cnt[u], ++sum[u], void();
else if (val[u] < x) insert(ch[u][1], x);
else insert(ch[u][0], x);
pushup(u);
}
inline int rank(const int rt, const LL x) { // count elements <= x.
int u = rt, ret = 0;
while (u) {
if (val[u] == x) return ret + sum[ch[u][0]] + cnt[u];
else if (val[u] < x) ret += sum[ch[u][0]] + cnt[u], u = ch[u][1];
else u = ch[u][0];
}
return ret;
}
} sct;
namespace LCA {
const int MAXLG = 16;
int dep[MAXN + 5], fa[MAXN + 5][MAXLG + 2];
LL dis[MAXN + 5];
inline void append(const int u, const int f, const int w) {
fa[u][0] = f, dep[u] = dep[f] + 1, dis[u] = dis[f] + w;
for (int i = 1; fa[u][i - 1]; fa[u][i] = fa[fa[u][i - 1]][i - 1], ++i);
}
inline int lca(int u, int v) {
if (dep[u] < dep[v]) u ^= v ^= u ^= v;
per (i, MAXLG, 0) if (dep[fa[u][i]] >= dep[v]) u = fa[u][i];
if (u == v) return u;
per (i, MAXLG, 0) if (fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
inline LL dist(const int u, const int v) {
return dis[u] + dis[v] - 2 * dis[lca(u, v)];
}
} // namespace LCA.
namespace DivideTree {
int vfa[MAXN + 5], rad[MAXN + 5], ecnt, head[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline void link(const int u, const int v) {
graph[++ecnt] = { v, head[u] }, head[u] = ecnt;
graph[++ecnt] = { u, head[v] }, head[v] = ecnt;
}
std::vector<int> inc[MAXN + 5];
bool foc[MAXN + 5];
int siz[MAXN + 5], wgt[MAXN + 5], srt[MAXN + 5][2];
inline void collect(const int u, const int fa, std::vector<int>& rec) {
rec.push_back(u);
for (int i = head[u], v; i; i = graph[i].nxt) {
if (foc[v = graph[i].to] && v != fa) {
collect(v, u, rec);
}
}
}
inline void findG(const int u, const int fa, const int all, int& rt) {
siz[u] = 1, wgt[u] = 0;
for (int i = head[u], v; i; i = graph[i].nxt) {
if (foc[v = graph[i].to] && v != fa) {
findG(v, u, all, rt), siz[u] += siz[v];
chkmax(wgt[u], siz[v]);
}
}
chkmax(wgt[u], all - siz[u]);
if (!rt || wgt[rt] > wgt[u]) rt = u;
}
inline void divide(const int u) {
foc[u] = false;
sct.recycle(srt[u][0]), srt[u][0] = 0;
sct.recycle(srt[u][1]), srt[u][1] = 0;
for (int i = head[u], v; i; i = graph[i].nxt) if (foc[v = graph[i].to]) {
int rt = 0;
std::vector<int> tmp; collect(v, 0, tmp);
findG(v, 0, tmp.size(), rt), inc[rt].swap(tmp);
vfa[rt] = u, divide(rt);
}
}
void rebuild(const int); // pre-declare for function `update`.
inline void update(int u, const int til, const bool op) {
int pia = 0; LL tmpd = 0;
for (int las = 0, v = u; v != til; v = vfa[las = v]) {
if (op) inc[v].push_back(u);
sct.insert(srt[v][0], tmpd - rad[u]);
if (vfa[v]) {
sct.insert(srt[v][1], (tmpd = LCA::dist(u, vfa[v])) - rad[u]);
}
if (las && inc[las].size() > inc[v].size() * LUCK + 5) pia = v;
}
if (pia) rebuild(pia);
}
inline void rebuild(const int u) {
int vf = vfa[u], rt = 0;
for (int v: inc[u]) foc[v] = true;
findG(u, 0, inc[u].size(), rt), inc[rt].swap(inc[u]);
vfa[rt] = vf, divide(rt);
for (int v: inc[rt]) update(v, vfa[rt], 0);
}
inline void append(int u, const int rfa, const int r) {
link(u, rfa);
vfa[u] = rfa, rad[u] = r, update(u, 0, 1);
}
inline int contri(const int u) {
int ret = sct.rank(srt[u][0], rad[u]) - 1;
for (int las = u, v = vfa[u]; v; v = vfa[las = v]) {
LL d = LCA::dist(u, v);
ret += sct.rank(srt[v][0], rad[u] - d)
- sct.rank(srt[las][1], rad[u] - d);
}
return ret;
}
} // namespace DivideTree.
int main() {
rint(), n = rint();
LL ans = 0;
rep (i, 1, n) {
int a = rint() ^ (ans % 1'000'000'000), c = rint(), r = rint();
LCA::append(i, a, c);
DivideTree::append(i, a, r);
ans += DivideTree::contri(i);
wint(ans), putchar('\n');
}
return 0;
}