• Solution 「洛谷 P6021」洪水


    \(\mathcal{Description}\)

      Link.

      给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\)\(m\) 次操作:

    • 修改单点点权。
    • 询问让某棵子树的根不可到达子树内任意一片叶子的代价。

      \(n,m\le2\times10^5\)

    \(\mathcal{Solution}\)

      不考虑修改,列出 DP:

    \[f(u)=\begin{cases}a_u&u\text{ is leaf}\\\min\{a_u,\sum_vf(v)\}&\text{otherwise}\end{cases} \]

      单独拿出实儿子 \(s_u\)

    \[g(u)=\begin{cases}+\infty&u\text{ is leaf}\\\sum_{v\not=s_u}f(v)&\text{otherwise}\end{cases}\\\Rightarrow f(u)=\min\{a_u,f(s_u)+g(u)\} \]

      定义矩乘的 \(+\) 为加法,\(\times\) 为取 \(\min\),有:

    \[\begin{bmatrix}f(u)\\0\end{bmatrix}=\begin{bmatrix}g(u)&a_u\\+\infty&0\end{bmatrix}\begin{bmatrix}f(s_u)\\0\end{bmatrix} \]

      用 LCT / 树剖维护。若使用 LCT,询问 \(u\) 子树时,应 \(\operatorname{access}\) 原树上 \(u\) 的父亲,再 \(\operatorname{splay}\) \(u\),就能保证当前 \(u\) 的实链全部在子树内,输出 \(u\) 维护的矩乘答案即可。

      还有一点,虽然 DP 是自下而上的,但把矩乘展开却是由 \(u\) 向实儿子走的。注意乘法顺序。

    \(\mathcal{Code}\)

      询问的时候 \(\operatorname{access}\) 成了 LCT 上的父亲调哭了 qwq。

    #include <cstdio>
    
    #define calc( x ) ( min_ ( S[x][0][0], S[x][0][1] ) )
    
    typedef long long LL;
    
    const int MAXN = 2e5;
    const LL INF = 1e14;
    int n, m, ecnt, a[MAXN + 5], head[MAXN + 5];
    int srcfa[MAXN + 5], fa[MAXN + 5], ch[MAXN + 5][2];
    
    inline LL min_ ( const LL a, const LL b ) { return a < b ? a : b; }
    
    inline char fgc () {
    	static char buf[1 << 17], *p = buf, *q = buf;
    	return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q ) ? EOF : *p ++;
    }
    
    inline int rint () {
    	int x = 0, f = 1; char s = fgc ();
    	for ( ; s < '0' || '9' < s; s = fgc () ) f = s == '-' ? -f : f;
    	for ( ; '0' <= s && s <= '9'; s = fgc () ) x = x * 10 + ( s ^ '0' );
    	return x * f;
    }
    
    inline void wint ( LL x ) {
    	if ( x < 0 ) putchar ( '-' ), x = -x;
    	if ( 9 < x ) wint ( x / 10 );
    	putchar ( x % 10 ^ '0' );
    }
    
    struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
    
    struct Matrix {
    	LL mat[2][2];
    	Matrix (): mat { INF, INF, INF, INF } {}
    	inline LL* operator [] ( const int key ) { return mat[key]; }
    	inline Matrix operator * ( Matrix& t ) {
    		Matrix ret;
    		for ( int i = 0; i < 2; ++ i ) {
    			for ( int k = 0; k < 2; ++ k ) {
    				for ( int j = 0; j < 2; ++ j ) {
    					ret[i][j] = min_ ( ret[i][j], mat[i][k] + t[k][j] );
    				}
    			}
    		}
    		return ret;
    	}
    } G[MAXN + 5], S[MAXN + 5];
    
    inline void link ( const int s, const int t ) {
    	graph[++ ecnt] = { t, head[s] };
    	head[s] = ecnt;
    }
    
    inline bool nroot ( const int x ) { return ch[fa[x]][0] == x || ch[fa[x]][1] == x; }
    
    inline void pushup ( const int x ) {
    	S[x] = G[x];
    	if ( ch[x][0] ) S[x] = S[ch[x][0]] * S[x];
    	if ( ch[x][1] ) S[x] = S[x] * S[ch[x][1]];
    }
    
    inline void rotate ( const int x ) {
    	int y = fa[x], z = fa[y], k = ch[y][1] == x;
    	fa[x] = z; if ( nroot ( y ) ) ch[z][ch[z][1] == y] = x;
    	ch[y][k] = ch[x][k ^ 1]; if ( ch[x][k ^ 1] ) fa[ch[x][k ^ 1]] = y;
    	pushup ( ch[fa[y] = x][k ^ 1] = y ), pushup ( x );
    }
    
    inline void splay ( const int x ) {
    	for ( int y; nroot ( x ); rotate ( x ) ) {
    		if ( nroot ( y = fa[x] ) ) {
    			rotate ( x ^ y ^ ch[y][0] ^ ch[fa[y]][0] ? x : y );
    		}
    	}
    	pushup ( x );
    }
    
    inline void access ( int x ) {
    	for ( int y = 0; x; x = fa[y = x] ) {
    		splay ( x );
    		if ( ch[x][1] ) G[x][0][0] += calc ( ch[x][1] );
    		if ( y ) G[x][0][0] -= calc ( y );
    		ch[x][1] = y, pushup ( x );
    	}
    }
    
    inline LL initDP ( const int u, const int fath ) {
    	LL sum = INF; fa[u] = srcfa[u] = fath;
    	for ( int i = head[u], v; i; i = graph[i].nxt ) {
    		if ( ( v = graph[i].to ) ^ fath ) {
    			if ( sum == INF ) sum = 0;
    			sum += initDP ( v, u );
    		}
    	}
    	G[u][0][0] = sum, G[u][0][1] = a[u], G[u][1][1] = 0;
    	return S[u] = G[u], min_ ( sum, a[u] );
    }
    
    int main () {
    	n = rint ();
    	for ( int i = 1; i <= n; ++ i ) a[i] = rint ();
    	for ( int i = 1, u, v; i < n; ++ i ) {
    		u = rint (), v = rint ();
    		link ( u, v ), link ( v, u );
    	}
    	initDP ( 1, 0 );
    	m = rint ();
    	for ( int x, t, op; m --; ) {
    		for ( op = fgc (); op < 'A' || 'Z' < op; op = fgc () );
    		x = rint ();
    		if ( op == 'Q' ) {
    			if ( srcfa[x] ) access ( srcfa[x] );
    			splay ( x );
    			wint ( calc ( x ) ), putchar ( '\n' );
    		} else {
    			t = rint ();
    			access ( x ), splay ( x );
    			G[x][0][1] += t, pushup ( x );
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    【GIS】Vue、Leaflet、highlightmarker、bouncemarker
    【PHP】xampp配置多个监听端口和不同的网站目录(转)
    【ArcGIS】栅格分析-问题之001(转)
    java登录央行征信网站
    登录中国人民银行征信中心
    爬取百度百科上中国所有城市的信息
    pycharm pro版本激活
    一种爬虫架构分享
    中国联通短信验证码
    中国联通通话记录、身份认证、上网记录等信息
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13382045.html
Copyright © 2020-2023  润新知