• Solution -「CF 623E」Transforming Sequence


    题目

    题意简述

      link.

      有一个 (n) 个元素的集合,你需要进行 (m) 次操作。每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集。求操作的方案数,对 (10^9+7) 取模。

    数据规模

      (nle3 imes10^4)

    ( ext{Solution})

      显然当 (n<m),答案为 (0),先特判掉。

      首先列一个 naive 的 DP 方程,令 (f(i,j))(i) 次操作选出的集合并大小为 (j) 的方案数。易有:

    [f(i,j)=sum_{k=1}^j2^{j-k}{n-(j-k)choose k}f(i-1,j-k) ]

      那么答案为 (sum_{i=1}^nf(m,i))。暴力 DP 是 (mathcal{O}(mn^2)) 的。不过很显然这个式子是一个卷积的形式。把它变一下形:

    [f(i,j)=frac{1}{(n-j)!}sum_{k=1}^jfrac{1}{k!}cdot2^{j-k}[n-(j-k)]!f(i-1,j-k) ]

      忽略毒瘤的模数,每次转移 NTT 就可以了,复杂度 (mathcal{O}(mnlog n))

      这个 (f) 不太好优化。我们换一种形式,令 (g(i,j))(i) 次操作选出前 (j) 个元素的方案数。所以 (g(i,j)=frac{f(i,j)}{nchoose j})。那么对于 (g(1)),有 (g(1,i)=[0<ile n])。来考虑两层状态的合并:

    [g(u+v,i)=sum_{j=0}^ig(u,j)g(v,i-j){ichoose j}(2^j)^v ]

      理解一下:把 (u+v) 次操作和 (i) 个选出的元素分拆成两步完成:第一步选 (j) 个元素,第二步选 (i-j) 个。由于要在 (i) 里拿出 (j) 个给第一步(或说拿出 (i-j) 给第二步),所以有系数 (ichoose j)。关键点在于 ((2^u)^j):在第一步中,我们已经选出了 (j) 个元素,所以在第二步的每次操作,都可以任意取 (j) 个元素的子集,故有系数 ((2^j)^v)

      向卷积形式靠拢:

    [g(u+v,i)=i!sum_{j=0}^ifrac{2^{jv}g(u,j)}{j!}cdotfrac{g(v,i-j)}{(i-j)!} ]

      倍增处理 (g) 即可。复杂度 (mathcal{O}(nlog nlog m))

    代码

      这里用 MTT 实现任模 NTT。要特别留意每一步的取模嗷 qwq。

    #include <cmath>
    #include <cstdio>
    #include <iostream>
    
    typedef long long LL;
    
    const int MAXN = 1 << 16, P = 1e9 + 7;
    const double PI = acos ( -1 );
    int n, m, len, lg, rev[MAXN + 5], fac[MAXN + 5], ifac[MAXN + 5], pwr[MAXN + 5];
    int F[MAXN + 5], ans[MAXN + 5];
    
    struct Complex {
    	double x, y;
    	Complex () {} Complex ( const double tx, const double ty ): x ( tx ), y ( ty ) {}
    	inline Complex operator + ( const Complex t ) const { return Complex ( x + t.x, y + t.y ); }
    	inline Complex operator - ( const Complex t ) const { return Complex ( x - t.x, y - t.y ); }
    	inline Complex operator * ( const Complex t ) const { return Complex ( x * t.x - y * t.y, x * t.y + y * t.x ); }
    	inline Complex operator / ( const double t ) const { return Complex ( x / t, y / t ); }
    } omega[MAXN + 5];
    
    inline void FFT ( const int n, Complex* A, const int tp ) {
    	for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) std::swap ( A[i], A[rev[i]] );
    	for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
    		for ( int j = 0; j < n; j += i ) {
    			for ( int k = 0; k < stp; ++ k ) {
    				Complex w ( omega[n / stp * k].x, tp * omega[n / stp * k].y );
    				Complex ev ( A[j + k] ), ov ( w * A[j + k + stp] );
    				A[j + k] = ev + ov, A[j + k + stp] = ev - ov;
    			}
    		}
    	}
    	if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = A[i] / n;
    }
    
    inline void initFFT ( const int lg ) {
    	int n = 1 << lg;
    	for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lg >> 1 );
    	for ( int i = 1; i < n; i <<= 1 ) {
    		for ( int k = 0; k < i; ++ k ) {
    			omega[n / i * k] = Complex ( cos ( PI * k / i ), sin ( PI * k / i ) );
    		}
    	}
    }
    
    inline void polyConv ( const int n, const int* A, const int* B, int* C ) {
    	static Complex highA[MAXN + 5], highB[MAXN + 5], lowA[MAXN + 5], lowB[MAXN + 5];
    	for ( int i = 0; i < n; ++ i ) {
    		lowA[i].x = A[i] & 0x7fff, highA[i].x = A[i] >> 15;
    		lowB[i].x = B[i] & 0x7fff, highB[i].x = B[i] >> 15;
    		lowA[i].y = highA[i].y = lowB[i].y = highB[i].y = 0;
    	}
    	FFT ( n, lowA, 1 ), FFT ( n, highA, 1 ), FFT ( n, lowB, 1 ), FFT ( n, highB, 1 );
    	for ( int i = 0; i < n; ++ i ) {
    		Complex la ( lowA[i] ), ha ( highA[i] ), lb ( lowB[i] ), hb ( highB[i] );
    		lowA[i] = ha * hb, highA[i] = la * hb, lowB[i] = ha * lb, highB[i] = la * lb;
    	}
    	FFT ( n, lowA, -1 ), FFT ( n, highA, -1 ), FFT ( n, lowB, -1 ), FFT ( n, highB, -1 );
    	for ( int i = 0; i < n; ++ i ) {
    		C[i] = ( ( 1ll << 30 ) % P * ( LL ( round ( lowA[i].x ) ) % P ) % P
    			 + ( LL ( round ( highA[i].x ) ) % P << 15 ) % P
    			 + ( LL ( round ( lowB[i].x ) ) % P << 15 ) % P
    			 + ( LL ( round ( highB[i].x ) ) % P ) ) % P;
    	}
    }
    
    inline int qkpow ( int a, int b, const int p = P ) {
    	int ret = 1;
    	for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
    	return ret;
    }
    
    inline void init ( const int n ) {
    	fac[0] = ifac[0] = pwr[0] = 1;
    	for ( int i = 1; i <= n; ++ i ) {
    		fac[i] = 1ll * i * fac[i - 1] % P;
    		pwr[i] = ( pwr[i - 1] << 1 ) % P;
    	}
    	ifac[n] = qkpow ( fac[n], P - 2 );
    	for ( int i = n - 1; i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % P;
    }
    
    inline void add ( const int fn, const int fm ) {
    	if ( ! fn ) {
    		for ( int i = 0; i <= n; ++ i ) ans[i] = F[i];
    		return ;
    	}
    	static int A[MAXN + 5], B[MAXN + 5];
    	for ( int i = 0; i <= n; ++ i ) {
    		A[i] = 1ll * ans[i] * ifac[i] % P * qkpow ( 2, 1ll * i * fm % ( P - 1 ) ) % P;
    		B[i] = 1ll * F[i] * ifac[i] % P;
    	}
    	for ( int i = n + 1; i < len; ++ i ) A[i] = B[i] = 0;
    	polyConv ( len, A, B, ans );
    	for ( int i = 0; i <= n; ++ i ) ans[i] = 1ll * ans[i] * fac[i] % P;
    	for ( int i = n + 1; i < len; ++ i ) ans[i] = 0;
    }
    
    inline void shift ( const int cur ) {
    	static int A[MAXN + 5], B[MAXN + 5];
    	for ( int i = 0; i <= n; ++ i ) {
    		A[i] = 1ll * F[i] * ifac[i] % P * qkpow ( 2, 1ll * i * cur % ( P - 1 ) ) % P;
    		B[i] = 1ll * F[i] * ifac[i] % P;
    	}
    	for ( int i = n + 1; i < len; ++ i ) A[i] = B[i] = 0;
    	polyConv ( len, A, B, F );
    	for ( int i = 0; i <= n; ++ i ) F[i] = 1ll * F[i] * fac[i] % P;
    	for ( int i = n + 1; i < len; ++ i ) F[i] = 0;
    }
    
    int main () {
    	scanf ( "%d %d", &m, &n );
    	if ( m > n ) return puts ( "0" ), 0;
    	len = 1, lg = 0;
    	for ( ; len <= n << 1; len <<= 1, ++ lg );
    	initFFT ( lg ), init ( n );
    	for ( int i = 1; i <= n; ++ i ) F[i] = 1;
    	for ( int i = 0, cur = 0; 1 << i <= m; ++ i ) {
    		if ( ( m >> i ) & 1 ) add ( cur, 1 << i ), cur |= 1 << i;
    		shift ( 1 << i );
    	}
    	int sum = 0;
    	for ( int i = 0; i <= n; ++ i ) {
    		sum = ( sum + 1ll * ans[i] * fac[n] % P * ifac[i] % P * ifac[n - i] ) % P;
    	}
    	printf ( "%d
    ", sum );
    	return 0;
    }
    
  • 相关阅读:
    How to build Skia canvaskit
    c++ 多线程 并发 id generator 产生器
    c++ 多态 读书笔记
    c++ 各种奇门鬼爪的构造函数 和 类的初始化
    图说C++对象模型:对象内存布局详解 强烈推荐
    C++对象模型之RTTI的实现原理
    C++ cast static_cast、dynamic_cast、const_cast和reinterpret_cast(四种类型转换运算符) 强烈推荐
    Markdown 语法
    vc 编译选项 忽略crash
    chromium 编译报错 You must installWindows 10 SDK version 10.0.19041.0 including the "Debugging Tools for Windows" feature.
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13161559.html
Copyright © 2020-2023  润新知