• JUC并发编程丶


    工程准备

    新建项目

    • 新建maven项目juc
    • 设置好maven配置
    • Project Structure面板Project和Modules配置Java版本
    • Settings面板中搜javac配置好编译器版本

    在线JDK

    英文版

    image-20201108092235092

    中文版(机器翻译)

    image-20201108092510018

    Java线程

    Java默认有两个线程:main线程和GC线程

    Java本身不能开启一个线程(不能操作硬件),是通过调用native本地C++方法对硬件进行操作

    并发和并行

    并发(多线程操作同一个资源类)

    • CPU一核,同时服务多个线程,快速交替
    • 要提高性能,核心是把握:充分利用CPU资源

    并行(CPU多核(多个逻辑处理器)的前提下)

    • 多核,多个线程可以同时执行
    • 要提高性能可以使用线程池
    package com.gfpz.demo01;
    
    public class Test1 {
        public static void main(String[] args) {
    //        new Thread().start();
            //获取cpu核数
            //CPU密集型,IO密集型
            System.out.println(Runtime.getRuntime().availableProcessors());
        }
    }
    

    线程的状态

    Jdk源码中Thread.State是有6个状态(可能Java不要操作的状态没有列出来)

    WAITING 和 TIMED_WAITING:前者会一直等,后者是限制了时间的等待

    wait()和sleep()

    • wait()属于Object类;sleep()属于Thread类
    • wait()会释放锁;sleep()睡觉了,抱着锁睡的,不会释放锁
    • wait()必须在同步代码块中使用();sleep()可以在任意地方睡觉
    • wait()、sleep()都需要捕获InterruptedException异常

    同步方式:synchronized

    package com.gfpz.demo01;
    
    //基本的卖票例子
    
    /**
     * 公司中的开发,降低耦合性
     * 线程就是一个单独的资源类,它没有任何附属操作
     */
    public class SaleTicketDemo01 {
        public static void main(String[] args) {
            Ticket ticket = new Ticket();
            new Thread(() -> {for (int i = 0; i < 60; i++) ticket.sale();}, "A").start();
            new Thread(() -> {for (int i = 0; i < 60; i++) ticket.sale();}, "B").start();
            new Thread(() -> {for (int i = 0; i < 60; i++) ticket.sale();}, "C").start();
        }
    }
    
    //资源类 OOP
    class Ticket {
    
        private int number = 50;
    
        //synchronized 本质是 队列/锁
        public synchronized void sale() {
            if (number > 0) {
                System.out.println(Thread.currentThread().getName() + "卖出了第:" + (50 - number--) + "张票,剩余:" + number + "张票");
            }
        }
    }
    

    同步方式:Lock(JUC)

    锁代码块,手动开启和关闭(按照JDK固定模板)

    image-20201108185832007

    package com.gfpz.demo01;
    
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class SaleTicketDemo02 {
        public static void main(String[] args) {
            Ticket2 ticket2 = new Ticket2();
            new Thread(() -> {for (int i = 0; i < 100; i++) ticket2.sale();}, "A").start();
            new Thread(() -> {for (int i = 0; i < 100; i++) ticket2.sale();}, "B").start();
            new Thread(() -> {for (int i = 0; i < 100; i++) ticket2.sale();}, "C").start();
        }
    }
    
    class Ticket2 {
    
        private int number = 60;
    
        Lock l = new ReentrantLock();
    
        public void sale() {
            l.lock();
            try { // 业务代码
                if (number > 0) {
                    System.out.println(Thread.currentThread().getName() + "卖出了第:" + (60 - number--) + "张票,剩余:" + number + "张票");
                }
            } finally {
                l.unlock();
            }
        }
    }
    

    synchronized 与 Lock 的区别:

    1. synchronized 是Java内置的关键字,Lock是一个Java类
    2. synchronized 无法判断获取锁的状态,Lock可以判断是否获取到了锁
    3. synchronized 会自动释放锁,Lock必须要手动释放,不释放会死锁
    4. synchronized 线程会阻塞着一直等待锁,Lock可以通过 tryLock() 非阻塞方式获取锁
    5. synchronized 可重入锁,不可以中断的,非公平;Lock 可重入锁,可以判断锁,非公平(可设置)
    6. synchronized 适合锁少量的代码同步问题,Lock适合大量的同步代码,Lock更加灵活
    7. synchronized 使用形式是 锁方法或对象(代码块形式),Lock是按固定形式new锁对象/释放锁对象
    8. Lock 更细粒度,更精准的通知唤醒

    生产者消费者:synchronized

    package com.gfpz.pc;
    
    /**
     * 线程之间操作同一个资源,通过等待和唤醒进行通信
     */
    public class A {
        public static void main(String[] args) {
            Data data = new Data();
            //生产
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.increment();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"A").start();
            //消费
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.decrement();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"B").start();
        }
    }
    
    //生产者消费者:等待 业务 通知  面试手写(单例模式、排序算法、生产者消费者、死锁)
    class Data {
        private int number;
    
        public synchronized void increment() throws InterruptedException {
            if (number != 0) {//等于0才进行+1,不等于0等着
                //等待
                this.wait();
            }
            number++;
            System.out.println(Thread.currentThread().getName() + "=>" + number);
            //通知其他线程,我+1完了
            this.notifyAll();
        }
    
        public synchronized void decrement() throws InterruptedException {
            if (number == 0) {//不等于0才进行-1,等于0等着
                //等待
                this.wait();
            }
            number--;
            System.out.println(Thread.currentThread().getName() + "=>" + number);
            //通知其他线程,我-1完了
            this.notifyAll();
        }
    }
    

    上面只开启A,B线程时没有问题,但是多开一组生产者消费者C,D的时候,就会有问题,原因是wait存在虚假唤醒的问题,需要写在while循环中。

    image-20201109092521193

    将if改成while即可

    package com.gfpz.pc;
    
    /**
     * 线程之间操作同一个资源,通过等待和唤醒进行通信
     */
    public class A {
        public static void main(String[] args) {
            Data data = new Data();
            //生产
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.increment();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"A").start();
            //消费
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.decrement();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"B").start();
            //生产
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.increment();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"C").start();
            //消费
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.decrement();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"D").start();
        }
    }
    
    //生产者消费者:等待 业务 通知  面试手写(单例模式、排序算法、生产者消费者、死锁)
    class Data {
        private int number;
    
        public synchronized void increment() throws InterruptedException {
            while (number != 0) {//等于0才进行+1,不等于0等着
                //等待
                this.wait();
            }
            number++;
            System.out.println(Thread.currentThread().getName() + "=>" + number);
            //通知其他线程,我+1完了
            this.notifyAll();
        }
    
        public synchronized void decrement() throws InterruptedException {
            while (number == 0) {//不等于0才进行-1,等于0等着
                //等待
                this.wait();
            }
            number--;
            System.out.println(Thread.currentThread().getName() + "=>" + number);
            //通知其他线程,我-1完了
            this.notifyAll();
        }
    }
    

    生产者消费者:Lock(JUC)

    image-20201109093749314

    synchronized、wait、notifyAll都进行相应简单替换

    package com.gfpz.pc;
    
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    /**
     * 线程之间操作同一个资源,通过等待和唤醒机制进行通信
     */
    public class B {
        public static void main(String[] args) {
            Data2 data = new Data2();
            //生产
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.increment();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"A").start();
            //消费
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.decrement();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"B").start();
            //生产
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.increment();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"C").start();
            //消费
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    try {
                        data.decrement();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"D").start();
        }
    }
    
    //生产者消费者:等待 业务 通知  面试手写(单例模式、排序算法、生产者消费者、死锁)
    class Data2 {
        private int number;
        final Lock lock = new ReentrantLock();
        final Condition condition = lock.newCondition();
    
        public void increment() throws InterruptedException {
            lock.lock();
            try {
                while (number != 0) {//等于0才进行+1,不等于0等着
                    //等待
                    condition.await();
                }
                number++;
                System.out.println(Thread.currentThread().getName() + "=>" + number);
                //通知其他线程,我+1完了
                condition.signalAll();
            } finally {lock.unlock();}
        }
    
        public void decrement() throws InterruptedException {
            lock.lock();
            try {
                while (number == 0) {//不等于0才进行-1,等于0等着
                    //等待
                    condition.await();
                }
                number--;
                System.out.println(Thread.currentThread().getName() + "=>" + number);
                //通知其他线程,我-1完了
                condition.signalAll();
            } finally {lock.unlock();}
        }
    }
    

    但是,这样做还不够,没有充分利用Lock的功能;精准的通知/唤醒一个线程才是它的最佳实践

    package com.gfpz.pc;
    
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    /**
     * A执行完调用B,B执行完调用C,C执行完调用A
     */
    public class C {
        public static void main(String[] args) {
            Data3 data = new Data3();
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    data.printA();
                }
            },"A").start();
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    data.printB();
                }
            },"B").start();
            new Thread(()->{
                for (int i = 0; i < 10; i++) {
                    data.printC();
                }
            },"C").start();
        }
    }
    
    class Data3 {
        private int number = 1;//1A 2B 3C
        private Lock lock = new ReentrantLock();
        private Condition condition1 = lock.newCondition();
        private Condition condition2 = lock.newCondition();
        private Condition condition3 = lock.newCondition();
    
        public void printA() {
            lock.lock();try{
                while (number != 1) {
                    condition1.await();
                }
                System.out.println(Thread.currentThread().getName() + "=>AAA");
                number = 2;
                //唤醒B
                condition2.signal();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally{lock.unlock();}
        }
        public void printB() {
            lock.lock();try{
                while (number != 2) {
                    condition2.await();
                }
                System.out.println(Thread.currentThread().getName() + "=>BBB");
                number = 3;
                //唤醒C
                condition3.signal();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally{lock.unlock();}
        }
        public void printC() {
            lock.lock();try{
                while (number != 3) {
                    condition3.await();
                }
                System.out.println(Thread.currentThread().getName() + "=>CCC");
                number = 1;
                //唤醒A
                condition1.signal();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally{lock.unlock();}
        }
    }
    

    锁应用的问题

    同步方法,锁调用方法的对象,挟对象以执行方法,执行完才能释放

    package com.gfpz.lock8;
    
    import java.util.concurrent.TimeUnit;
    
    /**
     * 先打印啥?发短信还是打电话
     */
    public class Test1 {
        public static void main(String[] args) {
            Phone phone = new Phone();
            new Thread(()->{phone.sendSms();},"A").start();
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            new Thread(()->{phone.call();},"B").start();
        }
    }
    
    class Phone{
        //synchronized 锁的是方法的调用者,就是上面new的phone对象,先调用的哪个就执行哪个
        public synchronized void sendSms() {
            try {
                TimeUnit.SECONDS.sleep(4);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("发短信");
        }
    
        public synchronized void call() {
            System.out.println("打电话");
        }
    }
    

    非同步方法不需要等待对象释放锁

    package com.gfpz.lock8;
    
    import java.util.concurrent.TimeUnit;
    
    /**
     * 先打印啥?发短信还是hello
     */
    public class Test2 {
        public static void main(String[] args) {
            Phone2 phone = new Phone2();
            new Thread(()->{phone.sendSms();},"A").start();
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            new Thread(()->{phone.hello();},"B").start();//不受锁的影响
        }
    }
    
    class Phone2{
        //synchronized 锁的是方法的调用者,就是上面new的phone对象,先调用的哪个就执行哪个
        public synchronized void sendSms() {
            try {
                TimeUnit.SECONDS.sleep(4);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("发短信");
        }
    
        public synchronized void call() {
            System.out.println("打电话");
        }
    
        public void hello() {
            System.out.println("hello");
        }
    }
    

    不同的对象不考虑等待锁释放

    package com.gfpz.lock8;
    
    import java.util.concurrent.TimeUnit;
    
    /**
     * 先打印啥?显然是打电话
     */
    public class Test3 {
        public static void main(String[] args) {
            Phone3 phone1 = new Phone3();
            Phone3 phone2 = new Phone3();
            new Thread(()->{phone1.sendSms();},"A").start();
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            new Thread(()->{phone2.call();},"B").start();
        }
    }
    
    class Phone3{
        public synchronized void sendSms() {
            try {
                TimeUnit.SECONDS.sleep(4);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("发短信");
        }
    
        public synchronized void call() {
            System.out.println("打电话");
        }
    
        public void hello() {
            System.out.println("hello");
        }
    }
    

    加了 static 的 synchronized 锁的是类的 Class 对象

    package com.gfpz.lock8;
    
    import java.util.concurrent.TimeUnit;
    
    /**
     * 这个需要记住!关注 synchronized 是不是加了static,所以出现 synchronized 就要关注它锁的是什么
     */
    public class Test4 {
        public static void main(String[] args) {
            Phone4 phone = new Phone4();
            Phone4 phone2 = new Phone4();
            new Thread(()->{phone.sendSms();},"A").start();
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            new Thread(()->{phone2.call();},"B").start();
        }
    }
    
    class Phone4 {
        //锁的是 Phone4的Class对象
        public static synchronized void sendSms() {
            try {
                TimeUnit.SECONDS.sleep(4);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("发短信");
        }
    
        public static synchronized void call() {
            System.out.println("打电话");
        }
    
    }
    

    类的对象 和 类的Class对象

    package com.gfpz.lock8;
    
    import java.util.concurrent.TimeUnit;
    
    /**
     * 打电话 (关注第二个方法调用处是否需要等待第一个方法释放锁)
     */
    public class Test5 {
        public static void main(String[] args) {
            Phone5 phone = new Phone5();
            Phone5 phone2 = new Phone5();
            new Thread(()->{phone.sendSms();},"A").start();
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            new Thread(()->{phone.call();},"B").start();
        }
    }
    
    class Phone5 {
        //静态
        public static synchronized void sendSms() {
            try {
                TimeUnit.SECONDS.sleep(4);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("发短信");
        }
    
        //普通
        public synchronized void call() {
            System.out.println("打电话");
        }
    
    }
    

    集合安全问题

    并发修改异常java.util.ConcurrentModificationException

    List

    package com.gfpz.unsafe;
    
    import java.util.*;
    import java.util.concurrent.CopyOnWriteArrayList;
    
    public class ListTest {
        public static void main(String[] args) {
    //        List<String> list = Arrays.asList("1", "2", "3");
    //        list.forEach(System.out::println);
    
            /**
             * 并发下 ArrayList 是不安全的
             * 方案1:安全list:List<String> list = new Vector<>();
             * 方案2:用工具类让它变得安全:List<String> list = Collections.synchronizedList(new ArrayList<>());
             * 方案3:JUC写入时复制:List<String> list = new CopyOnWriteArrayList<>();
             */
            List<String> list = new CopyOnWriteArrayList<>();
            for (int i = 1; i <= 10; i++) {
                new Thread(() -> {
                    list.add(UUID.randomUUID().toString().substring(0, 5));
                    System.out.println(list);
                }, String.valueOf(i)).start();
            }
        }
    }
    

    image-20201109124947110

    Set

    package com.gfpz.unsafe;
    
    import java.util.Collections;
    import java.util.HashSet;
    import java.util.Set;
    import java.util.UUID;
    import java.util.concurrent.CopyOnWriteArraySet;
    
    /**
     * 同理
     * java.util.ConcurrentModificationException
     */
    public class SetTest {
        public static void main(String[] args) {
    //        Set<String> set = new HashSet<>();
    //        Set<String> set = Collections.synchronizedSet(new hashset<>());
            Set<String> set = new CopyOnWriteArraySet<>();
            for (int i = 1; i <= 30; i++) {
                new Thread(() -> {
                    set.add(UUID.randomUUID().toString().substring(0, 5));
                    System.out.println(set);
                }, String.valueOf(i)).start();
            }
    
        }
    }
    

    HashSet的底层就是HashMap

    public HashSet() {
     map = new HashMap<>();
    }
    
    public boolean add(E e) {
     return map.put(e, PRESENT)==null;
    }
    

    Map

    package com.gfpz.unsafe;
    
    import java.util.*;
    import java.util.concurrent.ConcurrentHashMap;
    
    //ConcurrentModificationException
    public class MapTest {
        public static void main(String[] args) {
            //Map 是这样用的吗?不是,工作中不用 HashMap
            //Map 默认等价于什么 new HashMap<>(16,0.75);//加载因子、初始容量
    //        Map<String, String> map = new HashMap<>();
    //        Map<String, String> map = Collections.synchronizedMap(new HashMap<>());
            Map<String, String> map = new ConcurrentHashMap<>();
            for (int i = 1; i <= 30; i++) {
                new Thread(() -> {
                    map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0, 5));
                    System.out.println(map);
                }, String.valueOf(i)).start();
            }
    
        }
    }
    

    ConcurrentHashMap/HashMap 的原理官方文档学习

    Callable实现多线程

    余生多线程就用者玩意儿吧丶

    • java.util.concurrent包下的接口
    • 可以有返回值
    • 可以抛出异常
    • 方法是call()
    package com.gfpz.callable;
    
    import java.util.concurrent.Callable;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.FutureTask;
    
    public class CallableTest {
        public static void main(String[] args) throws ExecutionException, InterruptedException {
            //FutureTask 实现了runnable接口,又可以通过callable进行构造
            FutureTask futureTask = new FutureTask(new MyThread());
            new Thread(futureTask,"A").start();
            new Thread(futureTask,"B").start();//只会打印1个call,结果会被缓存
            Integer ret = (Integer) futureTask.get();//这个方法可能产生阻塞,要放到最后,或者异步通信
            System.out.println(ret);
        }
    }
    
    //泛型对应call方法的返回值
    class MyThread implements Callable<Integer> {
    
        @Override
        public Integer call() throws Exception {
            System.out.println("call执行了");
            return 1024;
        }
    }
    

    常用的辅助类

    image-20201109141618199

    1、CountDownLatch 减法计数器

    最佳实践:所有人出门了才关教室门

    package com.gfpz.add;
    
    import java.util.concurrent.CountDownLatch;
    
    //计数器
    public class CountDownLatchDemo {
        public static void main(String[] args) throws InterruptedException {
            //总数是6
            CountDownLatch countDownLatch = new CountDownLatch(6);
    
            for (int i = 1; i <= 6; i++) {
                new Thread(()->{
                    System.out.println(Thread.currentThread().getName()+"Go out");
                    countDownLatch.countDown();//数量-1
                },String.valueOf(i)).start();
            }
            countDownLatch.await();//阻塞,等待计数器归零,然后再向下执行
            System.out.println("Close door");
        }
    }
    

    2、CycleBarrier 加法计数器

    最佳实践:集齐7颗龙珠召唤神龙

    package com.gfpz.add;
    
    import java.util.concurrent.BrokenBarrierException;
    import java.util.concurrent.CyclicBarrier;
    
    public class CyclicBarrierDemo {
        public static void main(String[] args) {
            /**
             * 集齐7颗龙珠召唤神龙
             */
            CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {
                System.out.println("召唤神龙!");
            });
            for (int i = 1; i <= 7; i++) {
                final int temp = i;//记住这个操作,在lambda中得到i的值
                new Thread(()->{
                    System.out.println(Thread.currentThread().getName()+"收集第:"+temp+"颗龙珠");
                    try {
                        cyclicBarrier.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } catch (BrokenBarrierException e) {
                        e.printStackTrace();
                    }
                }).start();
            }
        }
    }
    

    3、Semaphore 信号量

    最佳实践:多个共享资源互斥的使用;并发限流,控制最大的线程数

    package com.gfpz.add;
    
    import java.util.concurrent.Semaphore;
    import java.util.concurrent.TimeUnit;
    
    public class SemaphoreDemo {
        public static void main(String[] args) {
            //线程数量:停车位 
            Semaphore semaphore = new Semaphore(3);
            for (int i = 1; i <= 6; i++) {
                new Thread(()->{
                    try {
                        semaphore.acquire();//得到车位
                        System.out.println(Thread.currentThread().getName() + "抢到车位");
                        TimeUnit.SECONDS.sleep(2);
                        System.out.println(Thread.currentThread().getName() + "离开车位");
                    } catch (InterruptedException e) {
                        e.printStackTrace();//释放
                    }
                    semaphore.release();
                },String.valueOf(i)).start();
            }
        }
    }
    

    读写锁ReadWriteLock

    image-20201109152052487

    • 独占锁(写锁):一次只能被一个线程占有
    • 共享锁(读锁):多个线程可以同时占有
    package com.gfpz.rw;
    
    import java.util.HashMap;
    import java.util.Map;
    import java.util.concurrent.locks.ReadWriteLock;
    import java.util.concurrent.locks.ReentrantLock;
    import java.util.concurrent.locks.ReentrantReadWriteLock;
    
    public class ReadWriteLockDemo {
        public static void main(String[] args) {
            MyCacheLock myCache = new MyCacheLock();
            //写入
            for (int i = 1; i <= 5; i++) {
                final int temp = i;
                new Thread(() -> {
                    myCache.put(temp + "", temp + "");
                }, String.valueOf(i)).start();
            }
            //读取
            for (int i = 1; i <= 5; i++) {
                final int temp = i;
                new Thread(() -> {
                    myCache.get(temp + "");
                }, String.valueOf(i)).start();
            }
        }
    }
    
    //加锁的
    class MyCacheLock {
        private volatile Map<String, Object> map = new HashMap<>();
        //读写锁:更加细粒度的控制
        private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
    
        //写入的时候,只希望同时只有一个线程写
        public void put(String key, Object value) {
            readWriteLock.writeLock().lock();
            try {
                System.out.println(Thread.currentThread().getName() + "写入" + key);
                map.put(key, value);
                System.out.println(Thread.currentThread().getName() + "写入OK");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                readWriteLock.writeLock().unlock();
            }
        }
    
        //读 所有人都可以
        public void get(String key) {
            readWriteLock.readLock().lock();
            try {
                System.out.println(Thread.currentThread().getName() + "读取" + key);
                Object o = map.get(key);
                System.out.println(Thread.currentThread().getName() + "读取OK");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                readWriteLock.readLock().unlock();
            }
        }
    }
    
    /**
     * 自定义缓存,未加锁的
     */
    class MyCache {
        private volatile Map<String, Object> map = new HashMap<>();
    
        public void put(String key, Object value) {
            System.out.println(Thread.currentThread().getName() + "写入" + key);
            map.put(key, value);
            System.out.println(Thread.currentThread().getName() + "写入OK");
        }
    
        public void get(String key) {
            System.out.println(Thread.currentThread().getName() + "读取" + key);
            Object o = map.get(key);
            System.out.println(Thread.currentThread().getName() + "读取OK");
        }
    }
    

    阻塞队列BlockingQueue

    BlockingQueue 同List、Set及Queue都是同级的,都继承了Collection接口,都有实现类诸如ArrayBlockingQueue、LinkedBlockingQueue

    image-20201110203318117

    最佳实践:多线程并发处理、线程池,添加移除

    主要了解四组API

    动作 会抛出异常 不会抛出异常,有返回值 阻塞等待 超时等待
    添加 add offer put offer("d", 2, TimeUnit.SECONDS)
    移除 remove poll take poll(2, TimeUnit.SECONDS)
    查看队首元素 element peek - -
    package com.gfpz.bq;
    
    import java.util.concurrent.ArrayBlockingQueue;
    import java.util.concurrent.TimeUnit;
    
    public class Test {
        public static void main(String[] args) throws InterruptedException {
    //        test1();
    //        test2();
    //        test3();
            test4();
        }
    
        /**
         * 抛出异常
         */
        public static void test1() {
            ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);//参数为队列的大小
            System.out.println(blockingQueue.add("a"));
            System.out.println(blockingQueue.add("b"));
            System.out.println(blockingQueue.add("c"));
    //        System.out.println(blockingQueue.add("d"));//抛出异常 IllegalStateException: Queue full
            System.out.println("队首元素:"+blockingQueue.element());//
            System.out.println("-------------------------");
            System.out.println(blockingQueue.remove());//FIFO 先进先出
            System.out.println("队首元素:"+blockingQueue.element());//
            System.out.println(blockingQueue.remove());
            System.out.println(blockingQueue.remove());
    //        System.out.println(blockingQueue.remove());//NoSuchElementException
        }
    
        /**
         * 不抛出异常,有返回值
         */
        public static void test2() {
            ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);//参数为队列的大小
            System.out.println(blockingQueue.offer("a"));
            System.out.println(blockingQueue.offer("b"));
            System.out.println(blockingQueue.offer("c"));
            System.out.println(blockingQueue.offer("d"));//返回 false 不抛出异常
            System.out.println("队首元素:"+blockingQueue.peek());
            System.out.println("-------------------------");
            System.out.println(blockingQueue.poll());
            System.out.println("队首元素:"+blockingQueue.peek());
            System.out.println(blockingQueue.poll());
            System.out.println(blockingQueue.poll());
            System.out.println(blockingQueue.poll());//返回一个null,没有异常
        }
    
        /**
         * 等待 阻塞(一直阻塞)
         */
        public static void test3() throws InterruptedException {
            ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);//参数为队列的大小
            blockingQueue.put("a");
            blockingQueue.put("b");
            blockingQueue.put("c");
    //        blockingQueue.put("d");//队列里没有椅子了,会一直阻塞
            System.out.println(blockingQueue.take());
            System.out.println(blockingQueue.take());
            System.out.println(blockingQueue.take());
    //        System.out.println(blockingQueue.take());//取不到,一直阻塞
        }
    
        /**
         * 等待 阻塞(等待超时)
         */
        public static void test4() throws InterruptedException {
            ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);//参数为队列的大小
            blockingQueue.offer("a");
            blockingQueue.offer("b");
            blockingQueue.offer("c");
            //blockingQueue.offer("d", 2, TimeUnit.SECONDS);//超时时间 单位
            System.out.println("-------------------------");
            System.out.println(blockingQueue.poll());
            System.out.println(blockingQueue.poll());
            System.out.println(blockingQueue.poll());
            System.out.println(blockingQueue.poll(2, TimeUnit.SECONDS));//2秒拿不到就不拿了 返回个null
        }
    }
    

    同步队列SynchronousQueue

    没有容量,进去一个元素,必须等待取出来之后,才能再往里边放一个元素

    是上文阻塞队列BlockingQueue的实现类,同时也继承了非阻塞队列AbstractQueue

    package com.gfpz.bq;
    
    import java.util.concurrent.BlockingQueue;
    import java.util.concurrent.SynchronousQueue;
    import java.util.concurrent.TimeUnit;
    
    /**
     * 同步队列:让几个线程像几兄弟一样,保持一路
     */
    public class SynchronousQueueDemo {
        public static void main(String[] args) {
            BlockingQueue<String> blockingQueue = new SynchronousQueue<>();//同步队列
            new Thread(() -> {
                try {
                    System.out.println(Thread.currentThread().getName() + " put 1 ");
                    blockingQueue.put("1");
                    System.out.println(Thread.currentThread().getName() + " put 2 ");
                    blockingQueue.put("2");
                    System.out.println(Thread.currentThread().getName() + " put 3 ");
                    blockingQueue.put("3");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }, "T1").start();
            new Thread(() -> {
                try {
                    TimeUnit.SECONDS.sleep(3);
                    System.out.println(Thread.currentThread().getName()+"-->"+blockingQueue.take());
                    TimeUnit.SECONDS.sleep(3);
                    System.out.println(Thread.currentThread().getName()+"-->"+blockingQueue.take());
                    TimeUnit.SECONDS.sleep(3);
                    System.out.println(Thread.currentThread().getName()+"-->"+blockingQueue.take());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }, "T2").start();
        }
    }
    

    线程池

    线程池:三大方法、七大参数、四种拒绝策略

    程序运行就意味着占用着系统资源,就需要考虑优化使用

    • 降低资源的消耗(线程复用)
    • 提高响应速度
    • 方便管理(控制最大并发数)

    阿里Java开发手册要求:

    image-20201110220626539

    不允许使用 Executors 的三大方法,先了解它

    package com.gfpz.pool;
    
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    public class Demo01 {
        public static void main(String[] args) {
    //        ExecutorService threadPool = Executors.newSingleThreadExecutor();//单个线程;不会拒绝请求,可能堆积大量请求,导致OOM
    //        ExecutorService threadPool = Executors.newFixedThreadPool(5);//固定数目的线程数;不会拒绝,可能堆积大量请求,导致OOM
            ExecutorService threadPool = Executors.newCachedThreadPool();//可伸缩的,遇强则强;允许创建大量的线程,可能导致OOM
            try {
                for (int i = 0; i < 100; i++) {
                    //使用线程池创建线程
                    threadPool.execute(() -> {
                        System.out.println(Thread.currentThread().getName() + "  0k");
                    });
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                //线程池用完,程序结束,关闭线程池
                threadPool.shutdown();
            }
        }
    }
    

    七大参数

    三大方法本质都是用的 ThreadPoolExecutor 创建的

    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
    
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
    
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
    

    ThreadPoolExecutor 有7个构造参数(阿里要求同学自己创建线程池,用这个构造方法)

    public ThreadPoolExecutor(int corePoolSize,//核心线程池大小
                              int maximumPoolSize,//最大线程池大小
                              long keepAliveTime,//超时了没人调用就释放
                              TimeUnit unit,//超时单位
                              BlockingQueue<Runnable> workQueue,//阻塞队列
                              ThreadFactory threadFactory,//线程队列
                              RejectedExecutionHandler handler//拒绝策略
                             ) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
    

    四种拒绝策略

    image-20201111133730836

    package com.gfpz.pool;
    
    import java.util.concurrent.*;
    
    public class Demo01 {
        public static void main(String[] args) {
            //自定义线程池
            int heShu = Runtime.getRuntime().availableProcessors();//优化
            ExecutorService threadPool = new ThreadPoolExecutor(2//银行柜台平时开两个窗口
                    , heShu//,5最多开5个窗口
                    , 3//等3
                    , TimeUnit.SECONDS//秒钟
                    , new LinkedBlockingQueue<>(3)//3把等待办理业务的椅子
                    , Executors.defaultThreadFactory()//线程工厂
                    //4种拒绝策略(银行满了,还有人进来)
                    //,new ThreadPoolExecutor.AbortPolicy()//抛出异常:java.util.concurrent.RejectedExecutionException
                    //,new ThreadPoolExecutor.CallerRunsPolicy()//哪来的去哪里,main线程调用的,main线程自行处理业务
                    //,new ThreadPoolExecutor.DiscardPolicy()//不抛出异常,丢掉任务
                    ,new ThreadPoolExecutor.DiscardOldestPolicy()//队列满了,尝试去和最早的竞争,不抛出异常
            );
    
            try {
                for (int i = 1; i <= 9; i++) {
                    //使用线程池创建线程
                    threadPool.execute(() -> {
                        System.out.println(Thread.currentThread().getName() + "  0k");
                    });
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                //线程池用完,程序结束,关闭线程池
                threadPool.shutdown();
            }
        }
    }
    

    所以:告诉面试官,用 ThreadPoolExecutor 创建线程池就完事了!

    上文中设置最大线程数的地方有两种设置套路(涉及到调优):

    • CPU密集型:设置为CPU核数
    • IO密集型:判断程序中十分耗资源的IO线程(任务)数m,将最大线程数设置为>2m

    四大函数式接口

    函数式接口,就是四个必会的新东西之一,四个新东西:lambda表达式、链式编程、函数式接口、Stream流式计算

    函数式接口:只有一个方法的接口;简化编程模型,在新版本的框架底层大量应用

    诸如:

    @FunctionalInterface
    public interface Runnable {
        public abstract void run();
    }
    
    List list = new ArrayList<>();
    list.forEach(消费者类型的函数式接口);
    

    四个接口(所谓接口,就是约定了一类事情的行业规则,比如三星抢占6G规则,就是定义一堆接口)

    image-20201111155351869

    函数型接口Function

    一个输入参数,一个输出类型(函数就意味着输入输出嘛)

    image-20201111160717885

    测试

    package com.gfpz.function;
    
    import java.util.function.Function;
    
    /**
     * Function 函数型接口,有一个输入参数,有一个输出
     * 只要是 函数型接口,就可以用 lambda 表达式简化
     */
    public class Demo01 {
        public static void main(String[] args) {
            //工具类:传入啥,输出啥
            /*Function function = new Function<String, String>() {//创建匿名内部类
                @Override
                public String apply(String str) {
                    return str;
                }
            };*/
    //        Function<String, String> function = (str)->{return str;};
            Function<String, String> function = str->{return str;};
            System.out.println(function.apply("test"));
        }
    }
    

    断定型接口Predicate

    一个输入参数,一个输出类型(固定为布尔类型)(把输入给老先生,测凶吉)

    image-20201111162628406

    测试

    package com.gfpz.function;
    
    import java.util.function.Predicate;
    
    /**
     * 断定型接口
     */
    public class Demo02 {
        public static void main(String[] args) {
            //判断字符串是否为空
            /*Predicate<String> predicate = new Predicate<String>() {
                @Override
                public boolean test(String str) {
                    return str.isEmpty();
                }
            };*/
            Predicate<String> predicate = str->{return str.isEmpty();};
            System.out.println(predicate.test(""));
        }
    }
    

    消费型接口Consumer

    只有输入,没有返回值

    image-20201111164138111

    测试

    package com.gfpz.function;
    
    import java.util.function.Consumer;
    
    /**
     * 消费型接口,只有输入没有输出
     */
    public class Demo03 {
        public static void main(String[] args) {
            /*Consumer<String> consumer = new Consumer<String>() {
                @Override
                public void accept(String s) {
                    System.out.println(s);
                }
            };*/
            Consumer<String> consumer = s -> {
                System.out.println(s);
            };
            consumer.accept("sad");
        }
    }
    

    供给型接口Supplier

    没有输入参数,只有返回值

    image-20201111165221170

    测试

    package com.gfpz.function;
    
    import java.util.function.Supplier;
    
    /**
     * 供给型接口,没有参数只有返回值
     */
    public class Demo04 {
        public static void main(String[] args) {
            /*Supplier<Integer> supplier = new Supplier<Integer>() {
                @Override
                public Integer get() {
                    return 1024;
                }
            };*/
            Supplier<Integer> supplier = () -> {return 1024;};
            System.out.println(supplier.get());
        }
    }
    

    Stream流式计算

    大数据:存储+计算;集合、MySQL本质是存储数据;计算,交给流来搞。

    package com.gfpz.stream;
    
    import lombok.AllArgsConstructor;
    import lombok.Data;
    import lombok.NoArgsConstructor;
    
    import java.util.Arrays;
    import java.util.List;
    
    /**
     * 要求:一分钟内完成,一行代码实现筛选
     * 1、id为偶数
     * 2、年龄大于23
     * 3、用户名转为大写字母
     * 4、用户名倒着排序
     * 5、只输出一个用户名
     */
    public class Test {
        public static void main(String[] args) {
            User u1 = new User(1, "a", 21);
            User u2 = new User(2, "b", 22);
            User u3 = new User(3, "c", 23);
            User u4 = new User(4, "d", 24);
            User u5 = new User(6, "e", 25);
            List<User> list = Arrays.asList(u1, u2, u3, u4, u5);
            list.stream()
                    .filter(u->{return u.getId()%2==0;})
                    .filter(u->{return u.getAge() > 23;})
                    .map(u->{return u.getName().toUpperCase();})
                    .sorted((uu1,uu2)->{return uu2.compareTo(uu1);})
                    .limit(1)
                    .forEach(System.out::println);
        }
    }
    
    @Data//get set toString
    @NoArgsConstructor
    @AllArgsConstructor
    class User {
        private int id;
        private String name;
        private int age;
    }
    

    ForkJoin分支合并

    分治法 + 工作窃取:大数据量下使用

    image-20201111201040351

    用例:10亿以内的自然数求和

    package com.gfpz.forkjoin;
    
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.ForkJoinPool;
    import java.util.concurrent.ForkJoinTask;
    import java.util.concurrent.RecursiveTask;
    import java.util.stream.LongStream;
    
    /**
     * 求和计算
     */
    public class ForkJoinDemo extends RecursiveTask<Long> {
    
        private Long start;
        private Long end;
        //临界值
        private Long temp = 10000L;
    
        public ForkJoinDemo(Long start, Long end) {
            this.start = start;
            this.end = end;
        }
    
        //计算方法
        @Override
        protected Long compute() {
            if ((end - start) < temp) {
                long sum = 0L;
                for (long i = start; i <= end; i++) {
                    sum += i;
                }
                return sum;
            }else{//像递归
                long middle = (start + end) / 2;//中间值
                ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
                task1.fork();//拆分任务,把任务压入线程队列
                ForkJoinDemo task2 = new ForkJoinDemo(middle+1, end);
                task2.fork();
                return task1.join() + task2.join();//合并
            }
        }
    
        public static void main(String[] args) throws ExecutionException, InterruptedException {
    //        test1();//365
    //        test2();//818
            test3();//706
        }
    
        //月薪3k
        public static void test1() {
            long sum = 0L;
            long startTime = System.currentTimeMillis();
            for (long i = 1L; i <= 10_0000_0000; i++) {
                sum += i;
            }
            long endTime = System.currentTimeMillis();
            System.out.println("sum="+sum+",时间:"+(endTime-startTime));
        }
    
        //月薪6k:ForkJoin
        public static void test2() throws ExecutionException, InterruptedException {
            long startTime = System.currentTimeMillis();
    
            ForkJoinPool forkJoinPool = new ForkJoinPool();
            ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L);
            ForkJoinTask<Long> submit = forkJoinPool.submit(task);//直观上看就是起多线程来完成一堆任务
            Long sum = submit.get();
    
            long endTime = System.currentTimeMillis();
            System.out.println("sum="+sum+",时间:"+(endTime-startTime));
        }
    
        //月薪9k:Stream并行流
        public static void test3() {
            long startTime = System.currentTimeMillis();
            long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
            long endTime = System.currentTimeMillis();
            System.out.println("sum="+sum+",时间:"+(endTime-startTime));
        }
    }
    

    异步回调

    Future 设计初衷:对将来的某个事件的结果进行建模

    image-20201111225349257

    package com.gfpz.future;
    
    import java.util.concurrent.CompletableFuture;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.TimeUnit;
    
    /**
     * 异步调用
     */
    public class Demo01 {
        public static void main(String[] args) throws ExecutionException, InterruptedException {
    //        test1();
            test2();
        }
    
        //没有返回值的 异步回调
        public static void test1() throws ExecutionException, InterruptedException {
            CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(()->{
                try {
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName()+" runAsync=>Void");
            });
            System.out.println("sad");
            completableFuture.get();//阻塞获取执行结果
        }
    
        //有返回值的异步回调
        public static void test2() throws ExecutionException, InterruptedException {
            CompletableFuture<Integer> integerCompletableFuture = CompletableFuture.supplyAsync(() -> {
                System.out.println(Thread.currentThread().getName()+" supplyAsync=>Integer");
                int a = 1/0;
                return 1024;
            });
            int b = integerCompletableFuture.whenComplete((t, u) -> {
                System.out.println("t=>" + t);//正常的返回结果
                System.out.println("u=>" + u);//错误信息
            }).exceptionally((e) -> {
                System.out.println(e.getMessage());
                return 2333;//类似404
            }).get();
            System.out.println(b);
        }
    }
    

    JMM(Java内存模型)

    请谈谈你对 volatile 的理解

    • Java关键字
    • Java虚拟机提供的轻量级的同步机制
    • 保证可见性
    • 不保证原子性
    • 禁止指令重排

    说到可见性,就要先从JMM说起

    因为在不同的硬件生产商和不同的操作系统下,内存的访问逻辑有一定的差异,结果就是当你的代码在某个系统环境下运行良好,并且线程安全,但是换了个系统就出现各种问题。Java内存模型,就是为了屏蔽系统和硬件的差异,让一套代码在不同平台下能到达相同的访问结果。

    内存划分

    JMM规定了内存主要划分为主内存和工作内存两种。此处的主内存和工作内存跟JVM内存划分(堆、栈、方法区)是在不同的层次上进行的,如果非要对应起来,主内存对应的是Java堆中的对象实例部分,工作内存对应的是栈中的部分区域,从更底层的来说,主内存对应的是硬件的物理内存,工作内存对应的是寄存器和高速缓存。

    image-20201112100745030

    JVM在设计时候考虑到,如果JAVA线程每次读取和写入变量都直接操作主内存,对性能影响比较大,所以每条线程拥有各自的工作内存,工作内存中的变量是主内存中的一份拷贝,线程对变量的读取和写入,直接在工作内存中操作,而不能直接去操作主内存中的变量。但是这样就会出现一个问题,当一个线程修改了自己工作内存中变量,对其他线程是不可见的,会导致线程不安全的问题。因为JMM制定了一套标准来保证开发者在编写多线程程序的时候,能够控制什么时候内存会被同步给其他线程。

    内存交互操作

    内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可在分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许例外)

    • lock (锁定):作用于主内存的变量,把一个变量标识为线程独占状态
    • unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
    • read (读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用
    • load (载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中
    • use (使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令
    • assign(赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中
    • store (存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用
    • write (写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中

    JMM对这八种指令的使用,制定了如下规则:

    • 不允许read和load、store和write操作之一单独出现。即使用了read必须load,使用了store必须write
    • 不允许线程丢弃他最近的assign操作,即工作变量的数据改变了之后,必须告知主存
    • 不允许一个线程将没有assign的数据从工作内存同步回主内存
    • 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是怼变量实施use、store操作之前,必须经过assign和load操作
    • 一个变量同一时间只有一个线程能对其进行lock。多次lock后,必须执行相同次数的unlock才能解锁
    • 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值,在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值
    • 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量
    • 对一个变量进行unlock操作之前,必须把此变量同步回主内存

    按照上图的逻辑,就可能出现:程序不知道主内存的值已经被修改过了,因此引出了volatile

    volatile

    1、volatile保证可见性

    package com.gfpz.tvolatile;
    
    import java.util.concurrent.TimeUnit;
    
    public class JMMDemo {
        //不加 volatile 的话,线程1的死循环结束不了
        //加了 volatile 可以保证可见性
        private volatile static int num = 0;
        public static void main(String[] args) {//main线程
    
            new Thread(() -> {//线程1对主内存种num已经变化了毫不知情,所以一直不停下来
                while (num == 0) {
    
                }
            }).start();
    
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
    
            num = 1;
    
            System.out.println(num);
        }
    }
    

    2、volatile不保证原子性

    线程1在执行任务的时候,不能被打扰,也不能被分割

    package com.gfpz.tvolatile;
    
    /**
     * 不保证原子性
     */
    public class VDemo02 {
        private volatile static int num = 0;//volatile 不保证原子性
    
        public static void add(){//synchronized 可以保证
            num++;
        }
    
        public static void main(String[] args) {
            for (int i = 1; i <= 20; i++) {
                new Thread(()->{
                    for (int j = 0; j < 1000; j++) {
                        add();
                    }
                }).start();
            }
    
            while (Thread.activeCount() > 2) {//main gc
                Thread.yield();//线程礼让
            }
    
            System.out.println(Thread.currentThread().getName()+" "+num);
        }
    }
    

    反编译查看字节码文件 D:cangkujuc argetclassescomgfpz volatile>javap -c VDemo02.class

    image-20201112105754063

    num++ 并非一个单纯的原子性操作

    除了使用同步锁解决上面的原子性问题外,还可以使用原子类(比较高效,这些类的底层和操作系统挂钩)

    image-20201112110303894

    package com.gfpz.tvolatile;
    
    import java.util.concurrent.atomic.AtomicInteger;
    
    /**
     * AtomicInteger证原子性
     */
    public class VDemo03 {
        private static AtomicInteger num = new AtomicInteger();
    
        public static void add(){
            num.getAndIncrement();//底层用的Unsafe类 CAS
        }
    
        public static void main(String[] args) {
            for (int i = 1; i <= 20; i++) {
                new Thread(()->{
                    for (int j = 0; j < 1000; j++) {
                        add();
                    }
                }).start();
            }
    
            while (Thread.activeCount() > 2) {//main gc
                Thread.yield();//线程礼让
            }
    
            System.out.println(Thread.currentThread().getName()+" "+num);
        }
    }
    

    3、禁止指令重排

    我们所写的程序,计算机并不是按照我们看到的那样执行的,而是进行了重排,类似编译器按照文法优化重排、内存系统重排

    利用内存屏障:

    1. 保证特定操作的执行顺序
    2. 保证某些变量的内存可见性

    volatile在单例模式中有典型应用

    彻底玩转单例模式

    饿汉模式(浪费资源)

    package com.gfpz.single;
    
    //饿汉式单例
    public class Hungry {
        //会浪费空间,所以应该是需要用得时候才创建Hungry对象 即用懒汉模式
        private byte[] data1 = new byte[1024*1024];
        private byte[] data2 = new byte[1024*1024];
        private byte[] data3 = new byte[1024*1024];
        private byte[] data4 = new byte[1024*1024];
    
        private Hungry() {
        }
    
        private final static Hungry HUNGRY = new Hungry();
    
        public static Hungry getInstance() {
            return HUNGRY;
        }
    }
    

    DCL懒汉式(双重检测锁+volatile禁止指令重排)(也可能被反射破坏)

    package com.gfpz.single;
    
    import java.lang.reflect.Constructor;
    import java.lang.reflect.Field;
    
    //懒汉式单例
    public class LazyMan {
        /*public LazyMan() {
            System.out.println(Thread.currentThread().getName()+" ok");
        }*/
    
        private static boolean xiaoming = false;
    
        public LazyMan() {
            synchronized (LazyMan.class) {
                /*
                if (lazyMan != null) {//第三重检测
                    throw new RuntimeException("不要试图使用反射破坏单例");
                }
                */
                if (!xiaoming){
                    xiaoming = true;
                }else{
                    throw new RuntimeException("不要试图使用反射破坏单例");
                }
            }
        }
    
        /*
        private static LazyMan lazyMan;
        //单线程下单例ok  多线程下有问题
        public static LazyMan getInstance() {
            if(null ==lazyMan){
                lazyMan = new LazyMan();
            }
            return lazyMan;
        }*/
    
        private volatile static LazyMan lazyMan;//volatile
        //双重检测锁模式+volatile禁止指令重排 DCL懒汉!!!!!!!!!!!!!!!!
        public static LazyMan getInstance() {
            if(null ==lazyMan){
                synchronized (LazyMan.class) {
                    if(null ==lazyMan){
                        lazyMan = new LazyMan();//不是原子性操作,极端情况下也是有问题得
                        /**
                         * 1分配内存空间
                         * 2执行构造方法,初始化对象
                         * 3把对象指向这个空间
                         * 可能因指令重排产生问题
                         */
                    }
                }
            }
            return lazyMan;
        }
    
    
        public static void main(String[] args) throws Exception {
            /*
            //测试
            for (int i = 0; i < 10; i++) {
                new Thread(()->{
                    LazyMan.getInstance();
                }).start();
            }*/
    
            //反射破坏单例模式
            //LazyMan instance = LazyMan.getInstance();
    
            Field xiaoming = LazyMan.class.getDeclaredField("xiaoming");
            xiaoming.setAccessible(true);
    
            Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null);
            declaredConstructor.setAccessible(true);
    
            LazyMan instance = declaredConstructor.newInstance();
            xiaoming.set(instance,false);
            LazyMan instance2 = declaredConstructor.newInstance();
    
            System.out.println(instance.hashCode());
            System.out.println(instance2.hashCode());
        }
    }
    

    静态内部类玩法

    package com.gfpz.single;
    
    //静态内部类
    public class Holder {
        private Holder() {
    
        }
    
        public static Holder getInstance() {
            return InnerClass.HOLDER;
        }
    
        public static class InnerClass{
            private static final Holder HOLDER = new Holder();
        }
    }
    

    枚举避免破坏单例模式

    package com.gfpz.single;
    
    import java.lang.reflect.Constructor;
    
    //enum 本身也是一个class类
    public enum EnumSingle {
    
        INSTANCE;
    
        public EnumSingle getInstance() {
            return INSTANCE;
        }
    }
    
    class Test{
        //Cannot reflectively create enum objects 结论:枚举可以防止反射破坏单例
        public static void main(String[] args) throws Exception {
    //        EnumSingle instance1 = EnumSingle.INSTANCE;
    //        EnumSingle instance2 = EnumSingle.INSTANCE;
    //        System.out.println(instance1);
    //        System.out.println(instance2);
    
            EnumSingle instance1 = EnumSingle.INSTANCE;
            //Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(null);
            Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(String.class, int.class);
            declaredConstructor.setAccessible(true);
            EnumSingle instance2 = declaredConstructor.newInstance();
            //NoSuchMethodException
            System.out.println(instance1);
            System.out.println(instance2);
        }
    }
    

    Java自带反编译工具查看所有类和成员

    image-20201112123712442

    用 jad.exe 将字节码文件反编译为Java文件,查看发现真实参构造器 EnumSingle(String s, int i)

    image-20201112124258937

    理解CAS比较并交换

    比较 工作内存中 和 主内存中 的值,如果这是值是期望的,那么执行更新操作;如果不是,就一直循环(自旋锁)

    package com.gfpz.cas;
    
    import java.util.concurrent.atomic.AtomicInteger;
    
    public class CASDemo {
        public static void main(String[] args) {
            AtomicInteger atomicInteger = new AtomicInteger(2020);//给它一个初始值
            //CAS:compareAndSet 比较并交换
            //public final boolean compareAndSet(int expect, int update)
            //如果刚好是是期望值,就进行修改/更新
            //CAS 是cpu的并发原语 此处是Java层面的套用
            System.out.println(atomicInteger.compareAndSet(2020, 2021));
            System.out.println(atomicInteger);
    
            atomicInteger.incrementAndGet();
            atomicInteger.getAndIncrement();
    
            System.out.println(atomicInteger.compareAndSet(2020, 2021));
            System.out.println(atomicInteger);
        }
    }
    

    利用Unsafe类操作内存

    image-20201112132243890

    自旋锁

    image-20201112134231146

    缺点:

    1. 循环会耗时
    2. 一次性只能保证一个共享变量的原子性
    3. ABA问题

    ABA问题

    操作的值是被人动手脚的值,意义变了

    package com.gfpz.cas;
    
    import java.util.concurrent.atomic.AtomicInteger;
    
    public class CASDemo {
    //乐观锁
        public static void main(String[] args) {
            AtomicInteger atomicInteger = new AtomicInteger(2020);//给它一个初始值
    
            //捣乱的线程
            System.out.println(atomicInteger.compareAndSet(2020, 2021));
            System.out.println(atomicInteger);
    
            System.out.println(atomicInteger.compareAndSet(2021, 2020));
            System.out.println(atomicInteger);
    
            //期望的线程
            System.out.println(atomicInteger.compareAndSet(2020, 6666));
            System.out.println(atomicInteger);
        }
    }
    

    原子引用解决ABA问题

    image-20201112135845249

    package com.gfpz.cas;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.atomic.AtomicReference;
    import java.util.concurrent.atomic.AtomicStampedReference;
    
    public class CASDemo {
    //跟乐观锁的原理相同
        public static void main(String[] args) {
    //        AtomicInteger atomicInteger = new AtomicInteger(2020);//给它一个初始值
            //如果泛型是包装类,注意对象的引用问题  正常不会比较Integer
            AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference<>(1,1);
    
            new Thread(()->{
                int stamp = atomicStampedReference.getStamp();//获得版本号
                System.out.println("a1=>"+stamp);
                try {
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("a "+atomicStampedReference.compareAndSet(1, 2
                        , atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
                System.out.println("a2=>"+atomicStampedReference.getStamp());
                System.out.println("a "+atomicStampedReference.compareAndSet(2, 1
                        , atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
                System.out.println("a3=>"+atomicStampedReference.getStamp());
    
            },"a").start();
    
            new Thread(()->{
                int stamp = atomicStampedReference.getStamp();
                System.out.println("b1=>"+stamp);
                try {
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("b "+atomicStampedReference.compareAndSet(2, 6, stamp, stamp + 1));
                System.out.println("b2=>"+atomicStampedReference.getStamp());
            },"b").start();
        }
    }
    

    Integer使用了对象缓存机制,默认范围是-128~127,推荐使用静态工厂方法valueOf获取对象实例,而不是new,因为valueOf使用缓存,而new一定会创建新的对象分配新的内存空间

    image-20201112142019765

    各种锁的概念

    公平锁

    非常公平,不能够插队,必须先来后到

    非公平锁

    不公平,可以插队,3s不用等3h,默认都是非公平锁

    //创建锁的时候设置公平锁和非公平锁
    public ReentrantLock() {
        sync = new NonfairSync();
    }
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
    

    可重入锁(递归锁)

    拿到了外面的锁之后,就可以拿到里边的锁,自动获得

    synchronized 版

    package com.gfpz.lock;
    //synchronized
    public class Demo01 {
        public static void main(String[] args) {
            Phone phone = new Phone();
            new Thread(() -> {
                phone.sms();
            },"A").start();
            new Thread(() -> {
                phone.sms();
            },"B").start();
        }
    }
    class Phone{
        public synchronized void sms() {
            System.out.println(Thread.currentThread().getName()+" sms");
            call();//这里也有锁
        }
        public synchronized void call() {
            System.out.println(Thread.currentThread().getName()+" call");
        }
    }
    

    Lock 版

    package com.gfpz.lock;
    
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    //synchronized
    public class Demo02 {
        public static void main(String[] args) {
            Phone2 phone = new Phone2();
            new Thread(() -> {
                phone.sms();
            },"A").start();
            new Thread(() -> {
                phone.sms();
            },"B").start();
        }
    }
    
    class Phone2 {
        Lock lock = new ReentrantLock();
    
        public void sms() {
            lock.lock();
            lock.lock();
            try {
                System.out.println(Thread.currentThread().getName() + " sms");
                call();
            } catch (Exception e) {
                e.printStackTrace();
            }finally {
                lock.unlock();
                lock.unlock();
            }
        }
    
        public void call() {
            lock.lock();
            try {
                System.out.println(Thread.currentThread().getName() + " call");
            } catch (Exception e) {
                e.printStackTrace();
            }finally {
                lock.unlock();
            }
        }
    }
    

    自旋锁

    自定义锁

    package com.gfpz.lock;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicReference;
    
    public class SpinlockDemo {
        AtomicReference<Thread> atomicReference = new AtomicReference<>();
    
        //加锁
        public void myLock() {
            Thread thread = Thread.currentThread();
            System.out.println(Thread.currentThread().getName() + "==>mylock");
    
            //自旋锁
            while (!atomicReference.compareAndSet(null, thread)) {
    
            }
        }
    
        //解锁
        public void myUnLock() {
            Thread thread = Thread.currentThread();
            System.out.println(Thread.currentThread().getName() + "==>myUnLock");
            atomicReference.compareAndSet(thread, null);
        }
    }
    
    class TestSpinlock {
        public static void main(String[] args) throws Exception {
            SpinlockDemo lock = new SpinlockDemo();
    
            new Thread(() -> {
                lock.myLock();
                try {
                    TimeUnit.SECONDS.sleep(5);
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    lock.myUnLock();
                }
    
            }, "T1").start();
    
            TimeUnit.SECONDS.sleep(1);
    
            new Thread(() -> {
                lock.myLock();
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    lock.myUnLock();
                }
            }, "T2").start();
        }
    }
    

    死锁

    img

    package com.gfpz.lock;
    
    import java.util.concurrent.TimeUnit;
    
    public class DeadLockDemo {
        public static void main(String[] args) {
            String lockA = "lockA";
            String lockB = "lockB";
            new Thread(new MyThread(lockA,lockB),"T1").start();
            new Thread(new MyThread(lockB,lockA),"T2").start();
        }
    }
    
    class MyThread implements Runnable {
    
        private String lockA;
        private String lockB;
    
        public MyThread(String lockA, String lockB) {
            this.lockA = lockA;
            this.lockB = lockB;
        }
    
        @Override
        public void run() {
            synchronized (lockA) {
                System.out.println(Thread.currentThread().getName() + " lock:" + lockA + "==>get" + lockB);
    
                try {
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
    
                synchronized (lockB) {
                    System.out.println(Thread.currentThread().getName() + " lock:" + lockB + "==>get" + lockA);
                }
            }
        }
    }
    

    解决死锁

    1、线上异常

    2、日志

    3、查看堆栈信息

    使用 jps -l 定位进程号

    image-20201112153620653

    使用 jstack 进程号 查看

    image-20201112153919786

    击石乃有火,不击元无烟!!
  • 相关阅读:
    tomcat做成windows服务之后使用JMX监控的问题
    Spring CORS
    人大金仓
    今天遇到奇怪的事:SVN本地代码的标记突然没了,Clean up也报错
    你真得懂Javascript中的==等于运算符吗?
    Codeforces 384E 线段树+dfs序
    一个图形引擎的画面风格是由那些因素(技术)决定的?
    【BZOJ 1146】【CTSC 2008】网络管理network
    ajax核心技术1---XMLHttpRequset对象的使用
    Android中Application类的详解:
  • 原文地址:https://www.cnblogs.com/rain2020/p/13955259.html
Copyright © 2020-2023  润新知