Fleet of the Eternal Throne
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 838 Accepted Submission(s): 393
Problem Description
> The Eternal Fleet was built many centuries ago before the time of Valkorion by an unknown race on the planet of Iokath. The fate of the Fleet's builders is unknown but their legacy would live on. Its first known action was in the annihilation of all life in Wild Space. It spread across Wild Space and conquered almost every inhabited world within the region, including Zakuul. They were finally defeated by a mysterious vessel known as the Gravestone, a massive alien warship that countered the Eternal Fleet's might. Outfitted with specialized weapons designed to take out multiple targets at once, the Gravestone destroyed whole sections of the fleet with a single shot. The Eternal Fleet was finally defeated over Zakuul, where it was deactivated and hidden away. The Gravestone landed in the swamps of Zakuul, where the crew scuttled it and hid it away.
>
> — Wookieepedia
The major defeat of the Eternal Fleet is the connected defensive network. Though being effective in defensing a large fleet, it finally led to a chain-reaction and was destroyed by the Gravestone. Therefore, when the next generation of Eternal Fleet is built, you are asked to check the risk of the chain reaction.
The battleships of the Eternal Fleet are placed on a 2D plane of n rows. Each row is an array of battleships. The type of a battleship is denoted by an English lowercase alphabet. In other words, each row can be treated as a string. Below lists a possible configuration of the Eternal Fleet.
aa
bbbaaa
abbaababa
abba
If in the x-th row and the y-th row, there exists a consecutive segment of battleships that looks identical in both rows (i.e., a common substring of the x-th row and y-th row), at the same time the substring is a prefix of any other row (can be the x-th or the y-th row), the Eternal Fleet will have a risk of causing chain reaction.
Given a query (x, y), you should find the longest substring that have a risk of causing chain reaction.
>
> — Wookieepedia
The major defeat of the Eternal Fleet is the connected defensive network. Though being effective in defensing a large fleet, it finally led to a chain-reaction and was destroyed by the Gravestone. Therefore, when the next generation of Eternal Fleet is built, you are asked to check the risk of the chain reaction.
The battleships of the Eternal Fleet are placed on a 2D plane of n rows. Each row is an array of battleships. The type of a battleship is denoted by an English lowercase alphabet. In other words, each row can be treated as a string. Below lists a possible configuration of the Eternal Fleet.
aa
bbbaaa
abbaababa
abba
If in the x-th row and the y-th row, there exists a consecutive segment of battleships that looks identical in both rows (i.e., a common substring of the x-th row and y-th row), at the same time the substring is a prefix of any other row (can be the x-th or the y-th row), the Eternal Fleet will have a risk of causing chain reaction.
Given a query (x, y), you should find the longest substring that have a risk of causing chain reaction.
Input
The first line of the input contains an integer T, denoting the number of test cases.
For each test cases, the first line contains integer n (n≤105).
There are n lines following, each has a string consisting of lower case letters denoting the battleships in the row. The total length of the strings will not exceed 105.
And an integer m (1≤m≤100) is following, representing the number of queries.
For each of the following m lines, there are two integers x,y, denoting the query.
For each test cases, the first line contains integer n (n≤105).
There are n lines following, each has a string consisting of lower case letters denoting the battleships in the row. The total length of the strings will not exceed 105.
And an integer m (1≤m≤100) is following, representing the number of queries.
For each of the following m lines, there are two integers x,y, denoting the query.
Output
You should output the answers for the queries, one integer per line.
Sample Input
1
3
aaa
baaa
caaa
2
2 3
1 2
Sample Output
3
3
O(总长)对所有串建立Trie树,m次询问,每次将两个串拼接起来,中间用非小写字母的符号隔开,求出后缀数组中的height,扫一遍height数组,遇到值比当前ans大并且对应sa[i],sa[i-1]分别在len1两侧(即两个后缀分别起始于第一个串、第二个串)时在Trie树中跑一下,更新ans。总时间复杂度 (总长)+m*len*log(len)+m*len =O(m*len*log(len))
1 #include <cstdio> 2 #include <iostream> 3 #include <algorithm> 4 #include <vector> 5 #include <set> 6 #include <map> 7 #include <string> 8 #include <cstring> 9 #include <stack> 10 #include <queue> 11 #include <cmath> 12 #include <ctime> 13 #include <bitset> 14 #include <utility> 15 #include <assert.h> 16 using namespace std; 17 #define rank rankk 18 #define mp make_pair 19 #define pb push_back 20 #define xo(a,b) ((b)&1?(a):0) 21 #define tm tmp 22 //#define LL ll 23 typedef unsigned long long ull; 24 typedef pair<int,int> pii; 25 typedef long long ll; 26 typedef pair<ll,int> pli; 27 typedef pair<ll,ll> pll; 28 const int INF=0x3f3f3f3f; 29 const ll INFF=0x3f3f3f3f3f3f3f3fll; 30 const int MAX=1e5+5; 31 //const ll MAXN=2e8; 32 const int MAX_N=MAX; 33 const ll MOD=998244353; 34 //const long double pi=acos(-1.0); 35 //const double eps=0.00000001; 36 int gcd(int a,int b){return b?gcd(b,a%b):a;} 37 template<typename T>inline T abs(T a) {return a>0?a:-a;} 38 template<class T> inline 39 void read(T& num) { 40 bool start=false,neg=false; 41 char c; 42 num=0; 43 while((c=getchar())!=EOF) { 44 if(c=='-') start=neg=true; 45 else if(c>='0' && c<='9') { 46 start=true; 47 num=num*10+c-'0'; 48 } else if(start) break; 49 } 50 if(neg) num=-num; 51 } 52 inline ll powMM(ll a,ll b,ll M){ 53 ll ret=1; 54 a%=M; 55 // b%=M; 56 while (b){ 57 if (b&1) ret=ret*a%M; 58 b>>=1; 59 a=a*a%M; 60 } 61 return ret; 62 } 63 void open() 64 { 65 // freopen("1009.in","r",stdin); 66 freopen("out.txt","w",stdout); 67 } 68 const int MAXN=100005; 69 int t1[MAXN],t2[MAXN],c[MAXN];//求SA数组需要的中间变量,不需要赋值 70 //待排序的字符串放在s数组中,从s[0]到s[n-1],长度为n,且最大值小于m, 71 //除s[n-1]外的所有s[i]都大于0,r[n-1]=0 72 //函数结束以后结果放在sa数组中 73 bool cmp(int *r,int a,int b,int l) 74 { 75 return r[a] == r[b] && r[a+l] == r[b+l]; 76 } 77 void da(int str[],int sa[],int rank[],int height[],int n,int m) 78 { 79 str[n++]=0; 80 int i, j, p, *x = t1, *y = t2; 81 //第一轮基数排序,如果s的最大值很大,可改为快速排序 82 for(i = 0;i < m;i++)c[i] = 0; 83 for(i = 0;i < n;i++)c[x[i] = str[i]]++; 84 for(i = 1;i < m;i++)c[i] += c[i-1]; 85 for(i = n-1;i >= 0;i--)sa[--c[x[i]]] = i; 86 for(j = 1;j <= n; j <<= 1) 87 { 88 p = 0; 89 //直接利用sa数组排序第二关键字 90 for(i = n-j; i < n; i++)y[p++] = i;//后面的j个数第二关键字为空的最小 91 for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j; 92 //这样数组y保存的就是按照第二关键字排序的结果 93 //基数排序第一关键字 94 for(i = 0; i < m; i++)c[i] = 0; 95 for(i = 0; i < n; i++)c[x[y[i]]]++; 96 for(i = 1; i < m;i++)c[i] += c[i-1]; 97 for(i = n-1; i >= 0;i--)sa[--c[x[y[i]]]] = y[i]; 98 swap(x,y); 99 //根据sa和x数组计算新的x数组 swap(x,y); 100 p = 1; x[sa[0]] = 0; 101 for(i = 1;i < n;i++) 102 x[sa[i]] = cmp(y,sa[i-1],sa[i],j)?p-1:p++; 103 if(p >= n)break; 104 m = p;//下次基数排序的最大值 105 } 106 int k = 0; n--; 107 for(i = 0;i <= n;i++)rank[sa[i]] = i; 108 for(i = 0;i < n;i++) 109 { 110 if(k)k--; 111 j = sa[rank[i]-1]; while(str[i+k] == str[j+k])k++; height[rank[i]] = k; 112 } 113 } 114 int rank[MAXN],height[MAXN]; 115 int RMQ[MAXN]; 116 int mm[MAXN]; 117 int best[20][MAXN]; 118 void initRMQ(int n) 119 { 120 mm[0]=-1; 121 for(int i=1;i<=n;i++) 122 mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1]; 123 for(int i=1;i<=n;i++)best[0][i]=i; 124 for(int i=1;i<=mm[n];i++) 125 for(int j=1;j+(1<<i)-1<=n;j++) 126 { 127 int a=best[i-1][j]; 128 int b=best[i-1][j+(1<<(i-1))]; 129 if(RMQ[a]<RMQ[b])best[i][j]=a; else best[i][j]=b; 130 } 131 } 132 int askRMQ(int a,int b) 133 { 134 int t; t=mm[b-a+1]; 135 b-=(1<<t)-1; 136 a=best[t][a];b=best[t][b]; 137 return RMQ[a]<RMQ[b]?a:b; 138 } 139 int lcp(int a,int b) 140 { 141 a=rank[a];b=rank[b]; 142 if(a>b)swap(a,b); 143 return height[askRMQ(a+1,b)]; 144 } 145 string sts[MAXN]; 146 int st[MAXN],sa[MAXN]; 147 148 struct Trie { 149 bool isWord; 150 Trie* child[27]; 151 Trie(bool isWord):isWord(isWord) 152 { 153 memset(child,0,sizeof(child)); 154 } 155 void addWord(string &s) 156 { 157 Trie*cur =this; 158 for(char c: s) 159 { 160 Trie* next=cur->child[c-'a'+1]; 161 if(next==nullptr) 162 next=cur->child[c-'a'+1]=new Trie(false); 163 cur=next; 164 } 165 cur->isWord=true; 166 } 167 int checkstr(string s) 168 { 169 Trie*cur=this;int re=0; 170 for(char c:s) 171 { 172 Trie* next=cur->child[c-'a'+1]; 173 if(next==nullptr)break; 174 else{cur=next;++re;} 175 } 176 return re; 177 } 178 ~Trie() 179 { 180 for(int i=0;i<27;++i) 181 { 182 if(child[i]) 183 delete child[i]; 184 } 185 } 186 }; 187 int t,n,m,x,y,an; 188 int main() 189 { 190 scanf("%d",&t); 191 while(t--) 192 { 193 scanf("%d",&n);Trie now(false); 194 for(int i=1;i<=n;i++){cin>>sts[i];now.addWord(sts[i]);} 195 scanf("%d",&m); 196 for(int i=1;i<=m;i++) 197 { 198 scanf("%d%d",&x,&y);int len1=sts[x].length(),len2=sts[y].length(); 199 for(int i=0;i<len1;i++)st[i]=sts[x][i]-'a'+1;st[len1]=27; 200 for(int i=0;i<len2;i++)st[len1+1+i]=sts[y][i]-'a'+1; 201 da(st,sa,rank,height,len1+len2+1,28);an=0; 202 for(int i=1;i<=len1+len2+1;i++) 203 { 204 int lo1=sa[i],lo2=sa[i-1];if(lo1>lo2)swap(lo1,lo2); 205 if(height[i]>an&&lo1<len1&&lo2>len1) 206 { 207 int tem=now.checkstr(sts[x].substr(lo1,height[i])); 208 if(tem>an)an=tem; 209 } 210 } 211 printf("%d ",an); 212 } 213 } 214 }