SpringApplication是所有springboot的入口类,分析此类有助于我们了解springboot的工作机制。本文以2.0.3.REALEASE版本作分析
SpringApplication
调用实例如下
package com.example.demospringbootweb;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class DemoSpringbootWebApplication {
public static void main(String[] args) {
SpringApplication.run(DemoSpringbootWebApplication.class, args);
}
}
调用的是SpringApplication.run()方法进行应用程序的启动。代码很简单也容易让用户上手,笔者这就进入其具体的类以探瑰宝。
注释描述
先看下其官方注释,有助于我们入门。由于注释过长,笔者此处只对其主要内容作下翻译总结
-
可以简单的通过main()函数来辅助启动一个spring应用程序。默认情况下其会按照以下步骤来辅助我们创建的应用
- 创建一个关联的ApplicationContext实例
- 注册CommandLinePropertySource实例暴露命令行的参数作为spring的属性
- 刷新ApplicationContext,并加载所有的单例beans
- 触发实现了CommandLineRunner的实例beans
-
SpringApplications可以读取来自不同源的beans。官方建议用户使用@Configuration注解相应的启动类,当然也支持从以下方式加载相应的beans
- AnnotatedBeanDefinitionReader加载指定的类
- XmlBeanDefinitionReader加载XML的配置信息或者GroovyBeanDefinitionReader加载groovy脚本资源
- ClassPathBeanDefinitionScanner扫描指定的包加载相应bean
过于抽象,笔者继续通过源码来对上述的内容进行回顾
构造函数
/**
* Create a new {@link SpringApplication} instance. The application context will load
* beans from the specified primary sources (see {@link SpringApplication class-level}
* documentation for details. The instance can be customized before calling
* {@link #run(String...)}.
* @param resourceLoader the resource loader to use
* @param primarySources the primary bean sources
* @see #run(Class, String[])
* @see #setSources(Set)
*/
@SuppressWarnings({ "unchecked", "rawtypes" })
public SpringApplication(ResourceLoader resourceLoader, Class<?>... primarySources) {
this.resourceLoader = resourceLoader;
// 加载的主类,可指定多个
Assert.notNull(primarySources, "PrimarySources must not be null");
this.primarySources = new LinkedHashSet<>(Arrays.asList(primarySources));
// 推断是否为web环境
this.webApplicationType = deduceWebApplicationType();
// 加载ApplicationContextInitializer接口类
setInitializers((Collection) getSpringFactoriesInstances(
ApplicationContextInitializer.class));
// 加载ApplicationListener接口类
setListeners((Collection) getSpringFactoriesInstances(ApplicationListener.class));
// 推断主函数类
this.mainApplicationClass = deduceMainApplicationClass();
}
对上述的注释作下简单的解释
SpringApplication#deduceWebApplicationType()
推断是否为web环境,源码如下
private WebApplicationType deduceWebApplicationType() {
if (ClassUtils.isPresent(REACTIVE_WEB_ENVIRONMENT_CLASS, null)
&& !ClassUtils.isPresent(MVC_WEB_ENVIRONMENT_CLASS, null)) {
return WebApplicationType.REACTIVE;
}
for (String className : WEB_ENVIRONMENT_CLASSES) {
if (!ClassUtils.isPresent(className, null)) {
return WebApplicationType.NONE;
}
}
return WebApplicationType.SERVLET;
}
从代码层看总共有三种应用类型,也代表了三个环境类型
- WebApplicationType.REACTIVE reactive web应用(classpath环境下须有org.springframework.web.reactive.DispatcherHandler)
- WebApplicationType.SERVLET servlet web应用(classpath环境下存在javax.servlet.Servlet或者org.springframework.web.context.ConfigurableWebApplicationContext)
- WebApplicationType.NONE 简单的JAVA应用(classpath环境不存在上述的类)
SpringApplication#deduceMainApplicationClass()
推断主函数类,源码如下
private Class<?> deduceMainApplicationClass() {
try {
StackTraceElement[] stackTrace = new RuntimeException().getStackTrace();
for (StackTraceElement stackTraceElement : stackTrace) {
if ("main".equals(stackTraceElement.getMethodName())) {
return Class.forName(stackTraceElement.getClassName());
}
}
}
catch (ClassNotFoundException ex) {
// Swallow and continue
}
return null;
}
很简单,就是寻找哪个类下含有main方法,此处和我们常用的启动类不谋而合
SpringApplication#getSpringFactoriesInstances()
找寻相应的接口实现类,源码如下
private <T> Collection<T> getSpringFactoriesInstances(Class<T> type,
Class<?>[] parameterTypes, Object... args) {
// 上下文classLoader
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
// 通过SpringFactoriesLoader来加载相应的类
Set<String> names = new LinkedHashSet<>(
SpringFactoriesLoader.loadFactoryNames(type, classLoader));
List<T> instances = createSpringFactoriesInstances(type, parameterTypes,
classLoader, args, names);
AnnotationAwareOrderComparator.sort(instances);
return instances;
}
进而查看相应的静态方法SpringFactoriesLoader.loadFactoryNames(),源码如下
public static List<String> loadFactoryNames(Class<?> factoryClass, @Nullable ClassLoader classLoader) {
String factoryClassName = factoryClass.getName();
// 关键处理类
return loadSpringFactories(classLoader).getOrDefault(factoryClassName, Collections.emptyList());
}
关键处理类出来了,源码跟上
private static Map<String, List<String>> loadSpringFactories(@Nullable ClassLoader classLoader) {
// 缓存处理
MultiValueMap<String, String> result = cache.get(classLoader);
if (result != null) {
return result;
}
try {
// 找寻所有classpath下的"META-INF/spring.factories"文件
Enumeration<URL> urls = (classLoader != null ?
classLoader.getResources(FACTORIES_RESOURCE_LOCATION) :
ClassLoader.getSystemResources(FACTORIES_RESOURCE_LOCATION));
result = new LinkedMultiValueMap<>();
while (urls.hasMoreElements()) {
URL url = urls.nextElement();
UrlResource resource = new UrlResource(url);
Properties properties = PropertiesLoaderUtils.loadProperties(resource);
for (Map.Entry<?, ?> entry : properties.entrySet()) {
// 对含有,的进行分隔并转为list集合
List<String> factoryClassNames = Arrays.asList(
StringUtils.commaDelimitedListToStringArray((String) entry.getValue()));
result.addAll((String) entry.getKey(), factoryClassNames);
}
}
cache.put(classLoader, result);
return result;
}
catch (IOException ex) {
throw new IllegalArgumentException("Unable to load factories from location [" +
FACTORIES_RESOURCE_LOCATION + "]", ex);
}
}
由此我们得出结论,classpath环境下所有含META-INF/spring.factories的文件,里面约定了默认的实现。笔者以spring-boot-2.0.3.REALEASE.jar为例
# PropertySource Loaders
org.springframework.boot.env.PropertySourceLoader=
org.springframework.boot.env.PropertiesPropertySourceLoader,
org.springframework.boot.env.YamlPropertySourceLoader
# Run Listeners
org.springframework.boot.SpringApplicationRunListener=
org.springframework.boot.context.event.EventPublishingRunListener
# Error Reporters
org.springframework.boot.SpringBootExceptionReporter=
org.springframework.boot.diagnostics.FailureAnalyzers
# Application Context Initializers
org.springframework.context.ApplicationContextInitializer=
org.springframework.boot.context.ConfigurationWarningsApplicationContextInitializer,
org.springframework.boot.context.ContextIdApplicationContextInitializer,
org.springframework.boot.context.config.DelegatingApplicationContextInitializer,
org.springframework.boot.web.context.ServerPortInfoApplicationContextInitializer
# Application Listeners
org.springframework.context.ApplicationListener=
org.springframework.boot.ClearCachesApplicationListener,
org.springframework.boot.builder.ParentContextCloserApplicationListener,
org.springframework.boot.context.FileEncodingApplicationListener,
org.springframework.boot.context.config.AnsiOutputApplicationListener,
org.springframework.boot.context.config.ConfigFileApplicationListener,
org.springframework.boot.context.config.DelegatingApplicationListener,
org.springframework.boot.context.logging.ClasspathLoggingApplicationListener,
org.springframework.boot.context.logging.LoggingApplicationListener,
org.springframework.boot.liquibase.LiquibaseServiceLocatorApplicationListener
# Environment Post Processors
org.springframework.boot.env.EnvironmentPostProcessor=
org.springframework.boot.cloud.CloudFoundryVcapEnvironmentPostProcessor,
org.springframework.boot.env.SpringApplicationJsonEnvironmentPostProcessor,
org.springframework.boot.env.SystemEnvironmentPropertySourceEnvironmentPostProcessor
# Failure Analyzers
org.springframework.boot.diagnostics.FailureAnalyzer=
org.springframework.boot.diagnostics.analyzer.BeanCurrentlyInCreationFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.BeanNotOfRequiredTypeFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.BindFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.BindValidationFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.UnboundConfigurationPropertyFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.ConnectorStartFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.NoUniqueBeanDefinitionFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.PortInUseFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.ValidationExceptionFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.InvalidConfigurationPropertyNameFailureAnalyzer,
org.springframework.boot.diagnostics.analyzer.InvalidConfigurationPropertyValueFailureAnalyzer
# FailureAnalysisReporters
org.springframework.boot.diagnostics.FailureAnalysisReporter=
org.springframework.boot.diagnostics.LoggingFailureAnalysisReporter
因此SpringApplication构造函数中加载的ApplicationContextInitializer类有如下
- ConfigurationWarningsApplicationContextInitializer (对ComponentScan指定的值为"org"等进行报警输出)
- ContextIdApplicationContextInitializer (创建默认名为application的ContextId对象,也可通过spring.application.name指定)
- DelegatingApplicationContextInitializer (对context.initializer.classes指定的class集合进行加载)
- ServerPortInfoApplicationContextInitializer (将local.server.port设置为指定的web端口,默认为8080)
而加载的ApplicationListener类有如下
- ClearCachesApplicationListener (反射工具缓存清空事件)
- ParentContextCloserApplicationListener (父ApplicationContext关闭事件)
- FileEncodingApplicationListener (系统变量配置的file.encoding值是否与环境变量spring.mandatory-file-encoding一致事件)
- AnsiOutputApplicationListener (控制台彩色输出事件,可通过spring.output.ansi.enabled来指定)
- ConfigFileApplicationListener (读取spring.profile.active/spring.profile.include配置)
- DelegatingApplicationListener (委托事件处理类)
- ClasspathLoggingApplicationListener (打印classpath信息,级别为debug)
- LoggingApplicationListener (日志处理事件)
- LiquibaseServiceLocatorApplicationListener (classpath是否存在liquibase的CustomResolverServiceLocator类判断事件)
其中ApplicationListener所绑定事件的触发顺序小结如下
1.ApplicationStartingEvent[应用程序启动事件starting]
2.ApplicationEnvironmentPreparedEvent[环境变量配置事件environmentPrepared]
3.ApplicationPreparedEvent[spring上下文加载前事件contextPrepared]
4.ApplicationStartedEvent[spring上下文加载完毕事件contextLoaded]此事件之后会统一调用ApplicationRunner/CommandLineRunner的实现类
5.ApplicationReadyEvent[应用准备事件running]
6.ApplicationFailedEvent/ContextClosedEvent[抛异常或者启动失败调用]
小结
由此SpringApplication构造函数完成了一些必要的初始化,重点在于ApplicationContextInitializer和ApplicationListener接口类。并且通过构造函数反射来进行实例化
限于篇幅过长,笔者将对SpringApplication#run()方法的具体解析放于下一章节来分析