• [Project Euler] Problem 48


    Problem Description

    The series, 11 + 22 + 33 + ... + 1010 = 10405071317.

    Find the last ten digits of the series, 11 + 22 + 33 + ... + 10001000.

     

    Python

    This problem is so easy to python, because python supports big integer~!

    def Power(num, exp):
    	result = 1;
    	for i in xrange(exp):
    		result = result * num
    	return result
    
    def Problem_48():
    	result = 0
    	for n in xrange(1000):
    		result = result + Power(n+1, n+1)
    	print result
    
    Problem_48()
    

    C++

    It is much more complex to C++, especially you don’t have a big integer class or something alike.

    You have to do everything on your own.

    Since the problem require us to give the last ten digits of the sum, we just put our focus on the last ten digits.

    TenDigitNumber

    First, I implement a class which only stores and handles last ten digits of a integer.

    this class is very simple, the class diagram:

    image

    • Use “long m_digit[10]” to store the digits;
    • Override “*” and “+” operator
    • Method “Display” is used to print digits

    To make it easier to explain the multiplication between two TenDigitnumber objects, I reduce digit count from 10 to 3, namely, how does a 3-digit number multiply another 3-digit number?

    foe example, 123* 456 = ???, the diagram below interprets the approach of multiplication.

        1 2 3
        4 5 6
        6 12 18
      5 10 15  
    4 8 12    
    4 13 28 27 18
    5 6 0 8 8

    It is hard for me that using words to explain the steps, so present the codes:

    	TenDigitNumber operator *(const TenDigitNumber& other)
    	{
    		TenDigitNumber result(0);
    		for(int i=0; i<10; i++)
    		{
    			if(other.m_digit[i] == 0)
    				continue;
    			for(int j=0; j<10; j++)
    			{
    				if(i + j > 9)
    					break;
    				if(m_digit[j] == 0)
    					continue;
    				result.m_digit[i + j] += m_digit[j] * other.m_digit[i];
    			}
    		}
    		
    		result.HandleDigits();
    
    		return result;	
    	}
    

    Addition is similar.

    	TenDigitNumber operator +(const TenDigitNumber& other)
    	{
    		TenDigitNumber result(0);
    		for(int i=0; i<10; i++)
    		{
    			result.m_digit[i] = m_digit[i] + other.m_digit[i];
    		}
    		result.HandleDigits();
    		return result;	
    	}
    

    HandleDigit method

    	void HandleDigits()
    	{
    		for(int i=0; i<10; i++)
    		{
    			if(m_digit[i] < 10 )
    				continue;
    			long temp = m_digit[i];
    			m_digit[i]=temp % 10;
    			temp = temp / 10;
    			if(i < 9)
    				m_digit[i+1] += temp;
    		}
    	}
    

    Power Method

    With TenDigitNumber, we can easily implement power method.

    TenDigitNumber Power(int num, int exp)
    {
    	TenDigitNumber tn(num);
    	TenDigitNumber result(1);
    	for(int i=0; i<exp; i++)
    	{
    		// result.Display();
    		result = result * tn;
    	}
    	return result;
    }
    

    Main method

    void Problem_48()
    {	
    	TenDigitNumber result(0);	
    	for(int i=1; i<=1000; i++)
    	{
    		TenDigitNumber temp = Power(i, i);
    		result = result + temp;
    	}
    	result.Display();
    }
    
  • 相关阅读:
    JQuery实现页面跳转
    CSS中让背景图片居中且不平铺
    C#后台将string="23.00"转换成int类型
    BootStrap的一些基本语法
    CSS实现文字阴影的效果
    BootStrap自定义轮播图播放速度
    BootStrap 轮播插件(carousel)支持左右手势滑动的方法(三种)
    C#常用快捷键
    jQuery hover() 方法
    鼠标移动有尾巴
  • 原文地址:https://www.cnblogs.com/quark/p/2517924.html
Copyright © 2020-2023  润新知