• HDU 3255 扫描线(立方体体积并变形)


    Farming

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1375    Accepted Submission(s): 402


    Problem Description
    You have a big farm, and you want to grow vegetables in it. You're too lazy to seed the seeds yourself, so you've hired n people to do the job for you.
    Each person works in a rectangular piece of land, seeding one seed in one unit square. The working areas of different people may overlap, so one unit square can be seeded several times. However, due to limited space, different seeds in one square fight each other -- finally, the most powerful seed wins. If there are several "most powerful" seeds, one of them win (it does not matter which one wins).

    There are m kinds of seeds. Different seeds grow up into different vegetables and sells for different prices. 
    As a rule, more powerful seeds always grow up into more expensive vegetables.
    Your task is to calculate how much money will you get, by selling all the vegetables in the whole farm.
     
    Input
    The first line contains a single integer T (T <= 10), the number of test cases. 
    Each case begins with two integers n, m (1 <= n <= 30000, 1 <= m <= 3).
    The next line contains m distinct positive integers pi (1 <= pi <= 100), the prices of each kind of vegetable. 
    The vegetables (and their corresponding seeds) are numbered 1 to m in the order they appear in the input. 
    Each of the following n lines contains five integers x1, y1, x2, y2, s, indicating a working seeded a rectangular area with lower-left corner (x1,y1), upper-right corner (x2,y2), with the s-th kind of seed.
    All of x1, y1, x2, y2 will be no larger than 106 in their absolute values.
     
    Output
    For each test case, print the case number and your final income.
     
    Sample Input
    2
    1 1
    25
    0 0 10 10 1
    2 2
    5 2
    0 0 2 1 1
    1 0 3 2 2
     
    Sample Output
    Case 1: 2500
    Case 2: 16
     
    Source
     
     
    题目意思:
    给n块矩形田地,每块田地上种编号为id的庄稼。每种庄稼有不同的价值和竞争力,价值越高竞争力越高,每个单位的田地只能存活竞争力最高的庄稼,求最终总价值为多少。
     
    思路:
    总价值=面积*该田地上庄稼的价值,若总价值=体积,该田地上庄稼的价值=高,那么问题就转换为求n块立方体的总体积(覆盖二次或二次以上仅算一次),其中立方体的高即为初始田地所种的庄稼的价值。
    而立方体体积并即为扫描线经典模型。
     
    代码:
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 #include <iostream>
      5 #include <vector>
      6 #include <queue>
      7 #include <cmath>
      8 #include <set>
      9 using namespace std;
     10 
     11 #define N 30005
     12 #define ll root<<1
     13 #define rr root<<1|1
     14 #define mid (a[root].l+a[root].r)/2
     15 
     16 int max(int x,int y){return x>y?x:y;}
     17 int min(int x,int y){return x<y?x:y;}
     18 int abs(int x,int y){return x<0?-x:x;}
     19 
     20 
     21 struct node{
     22     int l, r, val, sum;
     23 }a[N*8];
     24 
     25 struct Line{
     26     int x1, x2, y, val;
     27     Line(){}
     28     Line(int a,int b,int c,int d){
     29         x1=a;
     30         x2=b;
     31         y=c;
     32         val=d;
     33     }
     34 }line[N*2];
     35 
     36 bool cmp(Line a,Line b){
     37     return a.y<b.y;
     38 }
     39 
     40 struct Cube{
     41     int x1, y1, z1, x2, y2, z2;
     42 }cu[N];
     43 
     44 int n, m;
     45 int p[5];
     46 int xx[N*2];
     47 int zz[N*2];
     48 int nx, nz;
     49 
     50 int b_s(int key){
     51     int l=0, r=nx-1;
     52     while(l<=r){
     53         int mm=(l+r)/2;
     54         if(xx[mm]==key) return mm;
     55         else if(xx[mm]>key) r=mm-1;
     56         else if(xx[mm]<key) l=mm+1;
     57     }
     58 }
     59 
     60 void build(int l,int r,int root){
     61     a[root].l=l;
     62     a[root].r=r;
     63     a[root].val=a[root].sum=0;
     64     if(l==r) return;
     65     build(l,mid,ll);
     66     build(mid+1,r,rr);
     67 }
     68 
     69 void up(int root){
     70     if(a[root].val) a[root].sum=xx[a[root].r+1]-xx[a[root].l];
     71     else if(a[root].l==a[root].r) a[root].sum=0;
     72     else a[root].sum=a[ll].sum+a[rr].sum;
     73 }
     74 
     75 void update(int l,int r,int val,int root){
     76     if(a[root].l==l&&a[root].r==r){
     77         a[root].val+=val;
     78         up(root);
     79         return;
     80     }
     81     if(r<=a[ll].r) update(l,r,val,ll);
     82     else if(l>=a[rr].l) update(l,r,val,rr);
     83     else{
     84         update(l,mid,val,ll);
     85         update(mid+1,r,val,rr);
     86     }
     87     up(root);
     88 }
     89 
     90 main()
     91 {
     92     int t, i, j, k;
     93     int kase=1;
     94     cin>>t;
     95     while(t--){
     96         scanf("%d %d",&n,&m);
     97         for(i=1;i<=m;i++) scanf("%d",&p[i]);
     98         nx=nz=0;
     99         for(i=0;i<n;i++){
    100             scanf("%d %d %d %d %d",&cu[i].x1,&cu[i].y1,&cu[i].x2,&cu[i].y2,&cu[i].z2);
    101             cu[i].z1=0;
    102             cu[i].z2=p[cu[i].z2];
    103             xx[nx++]=cu[i].x1;
    104             xx[nx++]=cu[i].x2;
    105             zz[nz++]=cu[i].z1;
    106             zz[nz++]=cu[i].z2;
    107         }
    108         sort(xx,xx+nx);
    109         sort(zz,zz+nz);
    110         nx=unique(xx,xx+nx)-xx;
    111         nz=unique(zz,zz+nz)-zz;
    112         __int64 ans=0;
    113         for(i=1;i<nz;i++){
    114             k=0;
    115             for(j=0;j<n;j++){
    116                 if(cu[j].z1<=zz[i-1]&&cu[j].z2>=zz[i]){
    117                     line[k++]=Line(cu[j].x1,cu[j].x2,cu[j].y1,1);
    118                     line[k++]=Line(cu[j].x1,cu[j].x2,cu[j].y2,-1);
    119                 }
    120             }
    121             sort(line,line+k,cmp);
    122             build(0,nx,1);
    123             __int64 num=0;
    124             for(j=0;j<k-1;j++){
    125                 update(b_s(line[j].x1),b_s(line[j].x2)-1,line[j].val,1);
    126                 num+=(__int64)a[1].sum*(__int64)(line[j+1].y-line[j].y);
    127             }
    128             ans+=num*(__int64)(zz[i]-zz[i-1]);
    129         }
    130         printf("Case %d: %I64d
    ",kase++,ans);
    131     }
    132 }
  • 相关阅读:
    二叉搜索树与双向链表
    复杂链表的复制
    二叉树中和为某一值的路径
    二叉树的后序遍历
    从上往下打印二叉树
    栈的压入,弹出序列
    包含min函数的栈
    JS基础知识
    有序列表、无序列表、网页的格式和布局
    样式表(宽度和高度、背景字体、对齐方式边界与边框)
  • 原文地址:https://www.cnblogs.com/qq1012662902/p/4627860.html
Copyright © 2020-2023  润新知