• hdu 4324 Triangle LOVE(拓扑排序)


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4324

    Triangle LOVE

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3858    Accepted Submission(s): 1516



    Problem Description
    Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
    Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
      Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
     


    Input
    The first line contains a single integer t (1 <= t <= 15), the number of test cases.
    For each case, the first line contains one integer N (0 < N <= 2000).
    In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
    It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
     


    Output
    For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
    Take the sample output for more details.
     


    Sample Input
    2
    5
    00100
    10000
    01001
    11101
    11000
    5
    01111
    00000
    01000
    01100
    01110
     


    Sample Output
    Case #1: Yes
    Case #2: No
     


    Author
    BJTU
     


    Source
     
    题目大意:给一个n*n的矩阵,Map[i][j]表示i喜欢j;在这个矩阵表示的范围内,找到是否存在三角恋的关系。
    解题思路:做的第一道拓扑排序判环题目。判断其中是否有环就可以了,如果存在环必然存在三元环(这个是根据这道题目得出的结论)。
    先介绍一下拓扑排序:对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
    再通俗一点就是,一个点一个点的去删除,删掉的必须是入度为0的,如果将入度为0的全部删完,还有剩余边的话就会产生死锁,其中必存在环。
     
    详见代码。
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 int indir[2010];//用来表示入度
     8 char Map[2010][2010];//存储的是i,j两个节点的关系,1:i love j,0:j love i
     9 
    10 int main()
    11 {
    12     int t;
    13     scanf("%d",&t);
    14     int ff=1;
    15     while (t--)
    16     {
    17         memset(indir,0,sizeof(indir));
    18         int flag=0;
    19         int n;
    20         scanf("%d",&n);
    21         for (int i=0; i<n; i++)
    22         {
    23             scanf("%s",Map[i]);
    24             for (int j=0; j<n; j++)
    25             {
    26                 if (Map[i][j]=='1')//i love j,也就是i指向j
    27                     indir[j]++;//j的入度++
    28             }
    29         }
    30         int j;
    31         for (int i=0; i<n; i++)
    32         {
    33             for (j=0; j<n; j++)
    34                 if (indir[j]==0)
    35                     break;
    36             if (j==n)//如果全部找完都没有发现入度为0的必存在环。
    37             {
    38                 flag=1;
    39                 break;
    40             }
    41             else
    42             {
    43                 indir[j]--;//j的入度删掉
    44                 for (int k=0;k<n;k++)//j指向的点删掉
    45                 {
    46                     if (Map[j][k]=='1')
    47                     {
    48                         indir[k]--;
    49                     }
    50                 }
    51             }
    52         }
    53         if (flag==1)
    54             printf ("Case #%d: Yes
    ",ff++);
    55         else
    56             printf ("Case #%d: No
    ",ff++);
    57     }
    58 }
  • 相关阅读:
    java中a++和++a的区别详解
    Oracle 对比两张表不一样 的数据
    通配符的匹配很全面, 但无法找到元素 'tx:annotation-driven' 的声明
    Java语言基础-运算符
    java中+=详解 a+=b和a=a+b的区别
    java语言基础-变量
    java语言基础-进制
    Spring整合CXF发布及调用WebService
    Oracle Job定时任务的使用详解
    MySQL的主从配置
  • 原文地址:https://www.cnblogs.com/qq-star/p/4795159.html
Copyright © 2020-2023  润新知