• Flink实例(十七):FLINK 异步IO (二)原理


    1 原理实现

    AsyncDataStream.(un)orderedWait方法的主要工作就是创建了一个 AsyncWaitOperator。AsyncWaitOperator 是支持异步 IO 访问的算子实现,该算子会运行 AsyncFunction 并处理异步返回的结果,其内部原理如下图所示:

      如图所示,AsyncWaitOperator 主要由两部分组成:StreamElementQueue 和 Emitter。StreamElementQueue 是一个 Promise 队列,所谓 Promise 是一种异步抽象表示将来会有一个值(排队买鸭血粉丝汤给你的小票),这个队列是未完成的 Promise 队列,也就是进行中的请求队列。Emitter 是一个单独的线程,负责发送消息(收到的异步回复)给下游。

      图中E5表示进入该算子的第五个元素(”Element-5”),在执行过程中首先会将其包装成一个 “Promise” P5,然后将P5放入队列。最后调用 AsyncFunction 的 ayncInvoke 方法,该方法会向外部服务发起一个异步的请求,并注册回调。该回调会在异步请求成功返回时调用 AsyncCollector.collect 方法将返回的结果交给框架处理。实际上 AsyncCollector 是一个 Promise ,也就是 P5,在调用 collect 的时候会标记 Promise 为完成状态,并通知 Emitter 线程有完成的消息可以发送了。Emitter 就会从队列中拉取完成的 Promise ,并从 Promise 中取出消息发送给下游。

    2 消息的顺序性

      上文提到 Async I/O 提供了两种输出模式。其实细分有三种模式: 有序,ProcessingTime 无序,EventTime 无序。

      Flink 使用队列来实现不同的输出模式,并抽象出一个队列的接口(StreamElementQueue),这种分层设计使得AsyncWaitOperator和Emitter不用关心消息的顺序问题。StreamElementQueue有两种具体实现,分别是 OrderedStreamElementQueue 和 UnorderedStreamElementQueue。UnorderedStreamElementQueue 比较有意思,它使用了一套逻辑巧妙地实现完全无序和 EventTime 无序。

    3 有序

    有序比较简单,使用一个队列就能实现。所有新进入该算子的元素(包括 watermark),都会包装成 Promise 并按到达顺序放入该队列。如下图所示,尽管P4的结果先返回,但并不会发送,只有 P1 (队首)的结果返回了才会触发 Emitter 拉取队首元素进行发送。如下图所示:

    4 ProcessingTime 无序

    ProcessingTime 无序也比较简单,因为没有 watermark,不需要协调 watermark 与消息的顺序性,所以使用两个队列就能实现,一个 uncompletedQueue 一个 completedQueue。所有新进入该算子的元素,同样的包装成 Promise 并放入 uncompletedQueue 队列,当uncompletedQueue队列中任意的Promise返回了数据,则将该 Promise 移到 completedQueue 队列中,并通知 Emitter 消费。如下图所示:

    5 EventTime 无序

    EventTime 无序类似于有序与 ProcessingTime 无序的结合体。因为有 watermark,需要协调 watermark 与消息之间的顺序性,所以uncompletedQueue中存放的元素从原先的 Promise 变成了 Promise 集合。如果进入算子的是消息元素,则会包装成 Promise 放入队尾的集合中。如果进入算子的是 watermark,也会包装成 Promise 并放到一个独立的集合中,再将该集合加入到 uncompletedQueue 队尾,最后再创建一个空集合加到 uncompletedQueue 队尾。这样,watermark 就成了消息顺序的边界。只有处在队首的集合中的 Promise 返回了数据,才能将该 Promise 移到 completedQueue 队列中,由 Emitter 消费发往下游。只有队首集合空了,才能处理第二个集合。这样就保证了当且仅当某个 watermark 之前所有的消息都已经被发送了,该 watermark 才能被发送。过程如下图所示:

     

    6 快照与恢复

    分布式快照机制是为了保证状态的一致性。我们需要分析哪些状态是需要快照的,哪些是不需要的。首先,已经完成回调并且已经发往下游的元素是不需要快照的。否则,会导致重发,那就不是 exactly-once 了。而已经完成回调且未发往下游的元素,加上未完成回调的元素,就是上述队列中的所有元素。

    所以快照的逻辑也非常简单。

    (1)清空原有的状态存储,

    (2)遍历uncompletedQueue中的所有 Promise,从中取出 StreamElement(消息或 watermark)并放入状态存储中(3)执行快照操作。

    恢复的时候,从快照中读取所有的元素全部再处理一次,当然包括之前已完成回调的元素。所以在失败恢复后,会有元素重复请求外部服务,但是每个回调的结果只会被发往下游一次。

    本文来自博客园,作者:秋华,转载请注明原文链接:https://www.cnblogs.com/qiu-hua/p/13778620.html

  • 相关阅读:
    复制某文件夹及其子文件夹中的一定大小的文件
    一个简单的查询脚本
    写一个交互的脚本
    nginx+php5.6.12+discuz
    curl 错误
    python 交互界面tab补全
    uwsgi.xml
    supervisorctl
    认识nginx配置文件
    nginx+uwsgi+django 配置3
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/13778620.html
Copyright © 2020-2023  润新知