• 数据可视化实例(十一): 矩阵图(matplotlib,pandas)


    矩阵图

    https://datawhalechina.github.io/pms50/#/chapter9/chapter9

    导入所需要的库

    import numpy as np              # 导入numpy库
    import pandas as pd             # 导入pandas库
    import matplotlib as mpl        # 导入matplotlib库
    import matplotlib.pyplot as plt
    import seaborn as sns           # 导入seaborn库
    %matplotlib inline              # 在jupyter notebook显示图像

    设定图像各种属性

    large = 22; med = 16; small = 12
    
    params = {'axes.titlesize': large,    # 设置子图上的标题字体
                'legend.fontsize': med,     # 设置图例的字体
                'figure.figsize': (16, 10), # 设置图像的画布
               'axes.labelsize': med,      # 设置标签的字体
                'xtick.labelsize': med,     # 设置x轴上的标尺的字体
                'ytick.labelsize': med,     # 设置整个画布的标题字体
              'figure.titlesize': large}  
    #plt.rcParams.update(params)           # 更新默认属性
    plt.style.use('seaborn-whitegrid')    # 设定整体风格
    sns.set_style("white")                # 设定整体背景风格

    程序代码

    # step1:导入数据

    df = sns.load_dataset('iris')

    # step2: 绘制矩阵图

        # 画布
    plt.figure(figsize = (12, 10),    # 画布尺寸_(12, 10)
               dpi = 80)             # 分辨率_80
        # 矩阵图
    sns.pairplot(df,                                     # 使用的数据
                kind = 'scatter',                        # 绘制图像的类型_scatter
                hue = 'species',                         # 类别的列,让不同类别具有不谈的颜色
                plot_kws = dict(s = 50,                  # 点的尺寸
                               edgecolor = 'white',      # 边缘颜色
                               linewidth = 2.5))         # 线宽

    # step1:导入数据

    df = sns.load_dataset('iris')

    # step2: 绘制矩阵图

        # 画布
    plt.figure(figsize = (12, 10),    # 画布尺寸_(12, 10)
               dpi = 80)             # 分辨率_80
        # 矩阵图(带有拟合线的散点图)
    sns.pairplot(df,                                     # 使用的数据
                kind = 'reg',                            # 绘制图像的类型_reg
                hue = 'species')                         # 类别的列,让不同类别具有不谈的颜色

    博文总结

    seaborn.pairplot

    seaborn.pairplot(data, hue=None, hue_order=None,
    palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter',
    diag_kind='auto', markers=None, height=2.5, aspect=1,
    dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)

    Plot pairwise relationships in a dataset.

    By default, this function will create a grid of Axes such that each variable in data will by shared in the y-axis across a single row and in the x-axis across a single column.

    The diagonal Axes are treated differently, drawing a plot to show the univariate distribution of the data for the variable in that column.

    It is also possible to show a subset of variables or plot different variables on the rows and columns.

    This is a high-level interface for PairGrid that is intended to make it easy to draw a few common styles. You should use PairGriddirectly if you need more flexibility.

    参数:data:DataFrame

    Tidy (long-form) dataframe where each column is a variable and each row is an observation.

    hue:string (variable name), optional

    Variable in data to map plot aspects to different colors.

    hue_order:list of strings

    Order for the levels of the hue variable in the palette

    palette:dict or seaborn color palette

    Set of colors for mapping the hue variable. If a dict, keys should be values in the hue variable.

    vars:list of variable names, optional

    Variables within data to use, otherwise use every column with a numeric datatype.

    {x, y}_vars:lists of variable names, optional

    Variables within data to use separately for the rows and columns of the figure; i.e. to make a non-square plot.

    kind:{‘scatter’, ‘reg’}, optional

    Kind of plot for the non-identity relationships.

    diag_kind:{‘auto’, ‘hist’, ‘kde’}, optional

    Kind of plot for the diagonal subplots. The default depends on whether "hue" is used or not.

    markers:single matplotlib marker code or list, optional

    Either the marker to use for all datapoints or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers.

    height:scalar, optional

    Height (in inches) of each facet.

    aspect:scalar, optional

    Aspect * height gives the width (in inches) of each facet.

    dropna:boolean, optional

    Drop missing values from the data before plotting.

    {plot, diag, grid}_kws:dicts, optional

    Dictionaries of keyword arguments.

    返回值:grid:PairGrid

    Returns the underlying PairGrid instance for further tweaking.

    seaborn.load_dataset

    seaborn.load_dataset(name, cache=True, data_home=None, **kws)

    从在线库中获取数据集(需要联网)。

    参数:name:字符串

    数据集的名字 (<cite>name</cite>.csv on https://github.com/mwaskom/seaborn-data)。 您可以通过 get_dataset_names() 获取可用的数据集。

    cache:boolean, 可选

    如果为True,则在本地缓存数据并在后续调用中使用缓存。

    data_home:string, 可选

    用于存储缓存数据的目录。 默认情况下使用 ~/seaborn-data/

    kws:dict, 可选

    传递给 pandas.read_csv

  • 相关阅读:
    20165331 第五周学习总结
    第二次测试补做
    20165331 《Java程序设计》第四周学习总结
    2018-2019-1 20165237 《信息安全系统设计基础》第二周学习总结
    2018-2019-1 20165237 《信息安全系统设计基础》第一周学习总结
    20165237 2017-2018-2《Java程序设计》课程总结
    2017-2018-2 20165237 实验五《网络编程与安全》实验报告
    2017-2018-2 20165237 实验四《Android开发基础》实验报告
    20165237 2017-2018-2 《Java程序设计》第十周考试补做及编程题
    2017-2018-2 20165237 实验三《 敏捷开发与XP实践》实验报告
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/12897417.html
Copyright © 2020-2023  润新知