NIPS的论文,光是看标题就觉得高大深,先粗粗地列个reading list,希望以后再慢慢整理。
- A simple example of Dirichlet process mixture inconsistency for the number of components Jeffrey W. Miller, Matthew T. Harrison
- Accelerated Mini-Batch Stochastic Dual Coordinate Ascent Shai Shalev-Shwartz, Tong Zhang
- Accelerating Stochastic Gradient Descent using Predictive Variance Reduction Rie Johnson, Tong Zhang
- Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs Vikash Mansinghka, Tejas D. Kulkarni, Yura N. Perov, Josh Tenenbaum
- Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models Jie Liu, David Page
- Bayesian Hierarchical Community Discovery Charles Blundell, Yee Whye Teh
- Bayesian optimization explains human active search Ali Borji, Laurent Itti
- Better Approximation and Faster Algorithm Using the Proximal Average Yao-Liang Yu
- Compressive Feature Learning Hristo S. Paskov, Robert West, John C. Mitchell, Trevor Hastie
- Conditional Random Fields via Univariate Exponential Families Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu
- Contrastive Learning Using Spectral Methods James Y. Zou, Daniel Hsu, David C. Parkes, Ryan P. Adams
- Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes
- Correlated random features for fast semi-supervised learning Brian McWilliams, David Balduzzi, Joachim Buhmann
- DeViSE: A Deep Visual-Semantic Embedding Model Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc'Aurelio Ranzato, Tomas Mikolov
- Deep Fisher Networks for Large-Scale Image Classification Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
- Efficient Optimization for Sparse Gaussian Process Regression Yanshuai Cao, Marcus A. Brubaker, David Fleet, Aaron Hertzmann
- Extracting regions of interest from biological images with convolutional sparse block coding Marius Pachitariu, Adam M. Packer, Noah Pettit, Henry Dalgleish, Michael Hausser, Maneesh Sahani
- Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation Vibhav Vineet, Carsten Rother, Philip Torr
- Latent Maximum Margin Clustering Guang-Tong Zhou, Tian Lan, Arash Vahdat, Greg Mori
- Learning Multi-level Sparse Representations Ferran Diego Andilla, Fred A. Hamprecht
- Learning Multiple Models via Regularized Weighting Daniel Vainsencher, Shie Mannor, Huan Xu
- Learning a Deep Compact Image Representation for Visual Tracking Naiyan Wang, Dit-Yan Yeun
- Machine Teaching for Bayesian Learners in the Exponential Family Xiaojin Zhu
- Manifold-based Similarity Adaptation for Label Propagation Masayuki Karasuyama, Hiroshi Mamitsuka
- Mid-level Visual Element Discovery as Discriminative Mode Seeking Carl Doersch, Abhinav Gupta, Alexei A. Efros
- Multiscale Dictionary Learning for Estimating Conditional Distributions Francesca Petralia, Joshua T. Vogelstein, David Dunson
- On Poisson Graphical Models Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu
- Similarity Component Analysis Soravit Changpinyo, Kuan Liu, Fei Sha
Ali只有一篇论文,好开心。以后得看点高大上的论文咯。