Given an integer n
. No-Zero integer is a positive integer which doesn't contain any 0 in its decimal representation.
Return a list of two integers [A, B]
where:
A
andB
are No-Zero integers.A + B = n
It's guarateed that there is at least one valid solution. If there are many valid solutions you can return any of them.
Example 1:
Input: n = 2 Output: [1,1] Explanation: A = 1, B = 1. A + B = n and both A and B don't contain any 0 in their decimal representation.
Example 2:
Input: n = 11 Output: [2,9]
Example 3:
Input: n = 10000 Output: [1,9999]
Example 4:
Input: n = 69 Output: [1,68]
Example 5:
Input: n = 1010 Output: [11,999]
Constraints:
2 <= n <= 10^4
题目大意:将一个数分解为两个正整数之和,这两个正整数中不能包含0.
1 class Solution { 2 private: 3 bool containZero(int i) { 4 while (i > 0) { 5 if (i % 10 == 0) 6 return true; 7 else 8 i /= 10; 9 } 10 return false; 11 } 12 public: 13 vector<int> getNoZeroIntegers(int n) { 14 int i = 1; 15 for (; i < n; ++i) { 16 if (!containZero(i) && !containZero(n - i)) { 17 break; 18 } 19 } 20 return {i, n - i}; 21 } 22 };
python3:
1 class Solution: 2 def getNoZeroIntegers(self, n: int) -> List[int]: 3 return next([a, n-a] for a in range(1,n) if '0' not in f'{a}{n-a}')