• 2020ICPC·小米 网络选拔赛第二场


    2020ICPC·小米 网络选拔赛第二场 - C Data Structure Problem(线段树+树状数组)

    题面:

    思路:

    我们设:

    (S(i)=sum_{j=1}^{i}b_j)

    那么对于一个询问3,答案为:

    [max(a_i+S(x)-S(i)),iin[0,x] ]

    显然,对于每一个(iin[0,x])(S(x))都相等。

    那么可以将上式改为:

    [S(x)+max(a_i-S(i)),iin[0,x] ]

    则,上式的左侧(S(x))可以用单调修改,区间查询的树状数组来维护。

    上式的右侧(a_i-S(i))可以用单调修改,区间修改,区间查询最大值的线段树来维护。

    对于每一个操作1,

    将线段树中(-a_x-S(x))改为(y-S(x)),只需要单点修改第(mathit x)个位置(y-a[x]),并更新(a[x])

    操作2:

    将线段树区间([x,n])都加上(-y+b(x)),树状数组单点(mathit x)(y-b[x]),并更新(a[x])

    上面用到的加减法都是差分的思想。

    操作3:

    区间询问([1,x])中的(a_i-S(i))的最大值,并和( ext 0)取最大值,因为(mathit i) 可以取到0.

    再加上(S(x))即是答案。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 200010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    int n, m;
    ll tree[maxn];
    int lowbit(int x)
    {
    	return (-x)& x;
    }
    void add(int pos, ll val)
    {
    	while (pos <= n)
    	{
    		tree[pos] += val;
    		pos += lowbit(pos);
    	}
    }
    ll ask(int pos)
    {
    	ll res = 0;
    	while (pos > 0)
    	{
    		res += tree[pos];
    		pos -= lowbit(pos);
    	}
    	return res;
    }
    ll a[maxn];
    ll b[maxn];
    struct node
    {
    	int l, r;
    	ll val;
    	ll laze;
    } segment_tree[maxn << 2];
    ll sum[maxn];
    void pushup(int rt)
    {
    	segment_tree[rt].val = max(segment_tree[rt << 1].val, segment_tree[rt << 1 | 1].val);
    }
    void pushdown(int rt)
    {
    	ll num = segment_tree[rt].laze;
    	segment_tree[rt].laze = 0ll;
    	segment_tree[rt << 1].laze += num;
    	segment_tree[rt << 1].val += num;
    	segment_tree[rt << 1 | 1].laze += num;
    	segment_tree[rt << 1 | 1].val += num;
    }
    void build(int rt, int l, int r)
    {
    	segment_tree[rt].l = l;
    	segment_tree[rt].r = r;
    	segment_tree[rt].laze = 0;
    	if (l == r)
    	{
    		segment_tree[rt].val = a[l] - sum[l];
    		return;
    	}
    	int mid = (l + r) / 2;
    	build(rt << 1, l, mid);
    	build(rt << 1 | 1, mid + 1, r);
    	pushup(rt);
    }
    void change1(int rt, int pos, ll num) {
    	if (segment_tree[rt].l == pos && segment_tree[rt].r == pos)
    	{
    		segment_tree[rt].val += num;
    		return;
    	}
    	pushdown(rt);
    	int mid = (segment_tree[rt].l + segment_tree[rt].r) / 2;
    	if (pos > mid)
    	{
    		change1(rt << 1 | 1, pos, num);
    	} else
    	{
    		change1(rt << 1, pos, num);
    	}
    	pushup(rt);
    }
    void change2(int rt, int l, int r, ll num)
    {
    	if (l <= segment_tree[rt].l && segment_tree[rt].r <= r)
    	{
    		segment_tree[rt].val += num;
    		segment_tree[rt].laze += num;
    		return ;
    	}
    	pushdown(rt);
    	int mid = (segment_tree[rt].l + segment_tree[rt].r) / 2;
    	if (l <= mid)
    	{
    		change2(rt << 1, l, r, num);
    	}
    	if (r > mid)
    	{
    		change2(rt << 1 | 1, l, r, num);
    	}
    	pushup(rt);
    }
    ll ask(int rt, int l, int r)
    {
    	if (l <= segment_tree[rt].l && segment_tree[rt].r <= r)
    	{
    		return segment_tree[rt].val;
    	}
    	pushdown(rt);
    	int mid = (segment_tree[rt].l + segment_tree[rt].r) / 2;
    	ll res = -1e18;
    	if (l <= mid)
    	{
    		res = max(res, ask(rt << 1, l, r));
    	}
    	if (r > mid)
    	{
    		res = max(res, ask(rt << 1 | 1, l, r));
    	}
    	return res;
    }
    int main()
    {
    #if DEBUG_Switch
    	freopen("C:\code\input.txt", "r", stdin);
    #endif
    	//freopen("C:\code\output.txt","w",stdout);
    	while (~scanf("%d %d", &n, &m))
    	{
    		repd(i, 1, n)
    		{
    			a[i] = readint();
    		}
    		repd(i, 1, n)
    		{
    			b[i] = readint();
    			add(i, b[i]);
    			sum[i] = b[i] + sum[i - 1];// 建树时可以更快一点
    		}
    		build(1, 1, n);
    		while (m--)
    		{
    			int op = readint();
    			if (op == 1)
    			{
    				int x = readint();
    				ll y = readint();
    				change1(1, x, y - a[x]);
    				a[x] = y;
    			} else if (op == 2)
    			{
    				int x = readint();
    				ll y = readint();
    				change2(1, x, n, -y + b[x]);
    				add(x, y - b[x]);
    				b[x] = y;
    			} else
    			{
    				int x = readint();
    				ll ans = ask(1, 1, x);
    				ans = max(ans, 0ll);// S_x  也可以直接作为答案
    				ans += ask(x);
    				printf("%lld
    ", ans );
    			}
    		}
    		repd(i, 1, n)
    		{
    			tree[i] = 0ll;
    		}
    	}
    
    	return 0;
    }
    
    
    
    
  • 相关阅读:
    我理解的Node.js
    How to handle the issue of node.js msi to roll back under windows 8
    转:.Net 中AxShockwaveFlash的解析
    鱼哥的C++学习笔记(一)编译方法
    TabControl样式编写
    Cocos2d on VS12 step by step
    C# 控制Windows系统音量
    系统环境换成Win8+Vs2012碰到的问题记录
    Http学习笔记(一)
    WPF ListBox Template解析
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/13912503.html
Copyright © 2020-2023  润新知