链接:https://ac.nowcoder.com/acm/contest/560/D
来源:牛客网
题目描述
Give you a rectangular gird which is h cells high and w cells wide.
Each grid is black initially. You can turn some grids into white.
A grid A(x,y) is connected with grid B if the coordinate of B is (x+1, y),(x-1, y),(x, y+1) or (x, y-1).
And your task is to propose a plan of the gird which has exactly n connected components of black part.
If there is no valid plan containing n connected components of black part, output -1.
Each grid is black initially. You can turn some grids into white.
A grid A(x,y) is connected with grid B if the coordinate of B is (x+1, y),(x-1, y),(x, y+1) or (x, y-1).
And your task is to propose a plan of the gird which has exactly n connected components of black part.
If there is no valid plan containing n connected components of black part, output -1.
输入描述:
Three integers h, w, n(1≤h,w≤200,1≤n≤109)(1≤h,w≤200,1≤n≤109) as described above.
输出描述:
Print h rows and w columns, '#' represents a black grid and '*' represents a white grid, indicating your solution.
示例1
输出
复制#*#*#*#*#*
题意:
给你一个高h,宽w,一个数量k。让你构建一个h*w的数组,使之只含有两种元素,黑和白,即#和*
要求黑色块的联通集个数刚好是K。
思路:显然每一行中交叉填黑白,换行后每一行交叉填白黑,这样可以让这个h*w的数组中出现最大数量的黑色的联通块。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define rt return #define dll(x) scanf("%I64d",&x) #define xll(x) printf("%I64d ",x) #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), ' ', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define db(x) cout<<"== [ "<<x<<" ] =="<<endl; using namespace std; typedef long long ll; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;} inline void getInt(int* p); const int maxn=1000010; const int inf=0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ ll h,w,n; int main() { //freopen("D:\common_text\code_stream\in.txt","r",stdin); //freopen("D:\common_text\code_stream\out.txt","w",stdout); gbtb; cin>>h>>w>>n; ll cnt=0ll; int flag=1; repd(i,1,h) { if(flag) { cnt+=(w+1)/2; }else { cnt+=(w-1)/2; } flag=!flag; } if(cnt>=n) { flag=1; repd(i,1,h) { if(flag) { repd(j,1,w) { if(j&1) { if(n>0) { cout<<"#"; n--; }else { cout<<"*"; } }else { cout<<"*"; } } cout<<endl; }else { repd(j,1,w) { if(j&1) { cout<<"*"; }else { if(n>0) { cout<<"#"; n--; }else { cout<<"*"; } } } cout<<endl; } flag=!flag; } }else { cout<<-1<<endl; } return 0; } inline void getInt(int* p) { char ch; do { ch = getchar(); } while (ch == ' ' || ch == ' '); if (ch == '-') { *p = -(getchar() - '0'); while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 - ch + '0'; } } else { *p = ch - '0'; while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 + ch - '0'; } } }