• Linked List Cycle I&&II——快慢指针(II还没有完全理解)


    Linked List Cycle I

    Given a linked list, determine if it has a cycle in it.

    Follow up:
    Can you solve it without using extra space?

    该问题是经典面试问题,其标准解法是用两个指针,一快一慢,如果在快的指针能够追上慢的指针,则有环,否则无环。为了熟悉一下Python,用Python又写了一遍。

    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    class Solution {
    public:
        bool hasCycle(ListNode *head) {
            if(head==NULL||head->next==NULL)
                return false;
            ListNode *flag1=head;
            ListNode *flag2=head;
            while(1)
            {
                if(flag1->next==NULL)
                    return false;
                else
                    flag1=flag1->next;
                if(flag2->next==NULL)
                    return false;
                else
                    flag2=flag2->next;
                if(flag2->next==NULL)
                    return false;
                else
                    flag2=flag2->next;
                if(flag1==flag2)
                    return true;
                        
            }
        }
    };

     Python版本:

    # Definition for singly-linked list.
    # class ListNode:
    #     def __init__(self, x):
    #         self.val = x
    #         self.next = None
    
    class Solution:
        # @param head, a ListNode
        # @return a boolean
        def hasCycle(self, head):
            if head==None or head.next==None:
                return False
            flag1=head
            flag2=head
            while True:
                flag1=flag1.next
                if flag1.next==None:
                    return False
                flag2=flag2.next    
                if flag2.next==None:
                    return False
                flag2=flag2.next   
                if flag2.next==None:
                    return False
                if flag1==flag2:
                    return True
            

     Linked List Cycle II

    Given a linked list, return the node where the cycle begins. If there is no cycle, return null.

    Note: Do not modify the linked list.

    Follow up:
    Can you solve it without using extra space?

    感觉又是一道数学题,没想了,直接看的人家是怎么做的。

    转自:http://www.cnblogs.com/x1957/p/3406448.html

    比I麻烦点的就是找到循环开始点TAT

    I只是判断是否循环。要求不使用额外空间(不然hash就可以了

    按I的思路,我们又慢指针S和快指针F。。。F走两步,S走一步。。。若有环,必定相遇。

    画个图(很丑勿喷

    假设在红色凸起的地方相遇了。

    F走的路程应该是S的两倍

    S = x + y

    F = x + y + z + y = x + 2y + z

    2*S = F

    2x+2y = x + 2y + z

    得到x = z

    也就是从head到环开始的路程 = 从相遇到环开始的路程

    那么。。。只要S和F相遇了,我们拿一个从头开始走,一个从相遇的地方开始走

    两个都走一步,那么再次相遇必定是环的开始节点!

    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    class Solution {
    public:
        ListNode *detectCycle(ListNode *head) {
            // IMPORTANT: Please reset any member data you declared, as
            // the same Solution instance will be reused for each test case.
            if(head == NULL) return NULL;
            ListNode* S = head;
            ListNode* F = head;
            
            while(F != NULL){
                if(F) F = F -> next;
                if(F) F = F -> next;
                if(S) S = S -> next;
                if(F != NULL && F == S){
                    S = head;
                    while(S != F){
                        S = S -> next;
                        F = F -> next;
                    }
                    return S;
                }
            }
            return NULL;
        }
    };

    关于此题,网上看到一个更好的解释,解释如下:

    转自:http://blog.csdn.net/sysucph/article/details/15378043

    对于判断链表是否有环,方法很简单,用两个指针,一开始都指向头结点,一个是快指针,一次走两步,一个是慢指针,一次只走一步,当两个指针重合时表示存在环了。

    证明:假设链表有环,环的长度为N,慢指针在起始位置,快指针在位置k(位置从0开始计数),那么快指针只要比慢指针多走经过N-k步,就可以追上慢指针了(因为之前已经多走了k步,在多走N-K步则一共多走了一圈,刚好相遇)。。。,因为每一次快指针都比慢指针多走一步,所以一定可以在有限的步数追上慢指针。

    现在的问题是如何求出环的起始位置,我们先给出结论:当快指针和慢指针重合的时候,把一个指针重新指向头指针,两个指针现在速度一样,一次走一步,那么当两个指针值相同时,所在的指针就是我们要找的起始位置。

    证明内容来自一个国外的网站:http://umairsaeed.com/2011/06/23/finding-the-start-of-a-loop-in-a-circular-linked-list/

    要证明上面这个结论,我们先证明一个结论,假设慢指针Slow停在环的起始位置时,快指针Fast停在第k个位置,那么两个指针相遇时会停在从起始位置倒数第k个位置,也就是n-k这个位置

    从Slow停在环的起始位置,假设最终停在n-x相遇。

    因为Fast只要再比Slow多走n-k步,就可以追上Slow,而每一次操作Fast都比Slow多走一步,因为只需要再走n-k步就可以追上Slow,此时Slow停在n-k这个位置

    这意味着,如果Slow从环的起始位置,Fast从环的第k个位置开始,最终两个指针会在n-k这个位置相遇(n为环的长度)

    假设一开始Fast和Slow从开始位置开始遍历这个链表。


    令m = 3,表示经过三步,Slow结点到达环的起始位置,此时Fast在环的第m个位置,因为Fast比Slow多走了m步


    根据刚才的结论,当Slow停在起始位置,Fast停在m位置,两个链表最后会在n-m位置相遇


    此时把Slow移到头结点位置,两个结点都是要经过m步,才刚刚好到达环的起始位置。


    这里好起来好像m小于环的长度l,才成立。其实是一样的。

    假设m = t*l+k

    这就是说,环最终停在n-k这个位置了。还需要k步就可以到达环的起始结点。而把Slow结点重新设置为头结点,则需要t*l+k步才第一次到达环的起始结点,

    但是注意了,多走了k*l步,Fast结点还是会停在环的起始位置的。

    得证!!!

    和室友大神lyc交流,大神的想了一会,秒了= =!

    大神的解释是这样的:假设环的长度为l,从开始到两个指针第一次相遇总共走了m步,那么Fast指针走了2*m步,Slow指针走了m步,Fast比 Slow多走了m步,Fast比Slow多走了x圈,那么有x*l==m,l是m的一个因子,再走m步,两个指针每次走一步,Fast移到开头位 置,Slow走了m步停在第一次相遇位置,Fast因为也是每次走一步,所以也会停在相遇位置,而且可以看出来,一旦Fast进入环,Fast和Slow 结点就保持相对静止了。。。碉堡了。。春哥

  • 相关阅读:
    数据源ObjectDataSource的数据访问类的编写
    ASP.NET网页文本编辑器的使用
    装饰模式
    策略模式
    代理模式
    备份、还原数据库
    简单工厂和工厂模式
    ASP.NET上传多个文件
    数据库访问类的编写
    UVA 11069 A Graph Problem
  • 原文地址:https://www.cnblogs.com/qiaozhoulin/p/4539828.html
Copyright © 2020-2023  润新知