• HUT1602 GCD depth


    1602: GCD depth

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 24  Solved: 3
    [Submit][Status][Web Board]

    Description

    In mathematics, the greatest common divisor (gcd), also known as the greatest common factor (gcf), or highest common factor (hcf), of two or more non-zero integers, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4.
    ------ From Wikipedia

        In this problem,we will introduce a new value related to GCD,which is GCD depth. To GCD depth,follow function will discribe it clearly.

        int GCD_depth( int x , int y ) {
            if ( y == 0 ) return 0;
            else return GCD_depth( y , x%y ) + 1; 
        }

        And we define the GCD depth of y with x is GCD_depth(x,y).For example , GCD depth of 5 with 3 is 4.You can find the GCD depth of two numbers easily ,but LH wants know that: for a number x, how many numbers meet the condition that the GCD depth with x equals to d in the interval [y0,y1]? So please help LH to find the answer quickly.

    Input

      There are several test cases, each test case contains four Non-negative integers x( 0 <= x <= 200000) , d( 0 <= d <= 30 ),y0 ,y1(0 <= y0 <= y1 <= 10^9),which descripted as above. 
        The input will finish with the end of file.

    Output

       For each the case, just output a integer which represent the number of integers meeted the discripted condition. 

    Sample Input

    7 2 0 5 3 0 0 1 11 1 2 8

    Sample Output

    2 1 0

     

      四个数 N, M, S, E, 求 GCD_depth( N, i ) == M 的个数,其中 i 属于 [s, e]。

      思路:该题我们只要将 i 属于 [0 - N) 的GCD_depth计算出来,然后大于N的数就用 GCD_depth( N, i% N ) + 2 == M 去统计了,自己推一下就能明白为什么了。 注意当这个数等于N的时候比较特殊,这时候是加1而不是加 2。 主要是区间的读取边界太难处理了,代码比较丑。

      

      1 #include <cstdio>
    2 #include <cstring>
    3 #include <cstdlib>
    4 #include <cmath>
    5 using namespace std;
    6
    7 int gcd( int a, int b )
    8 {
    9 if( b== 0 )
    10 {
    11 return 0;
    12 }
    13 else return gcd( b, a% b )+ 1;
    14 }
    15
    16 int rec[200005];
    17
    18 int main()
    19 {
    20 int N, M, s, e;
    21 while( scanf( "%d %d %d %d", &N, &M, &s, &e )!= EOF )
    22 {
    23 int base= 0, cnt= 0, beg, end;
    24 if( N== 0 )
    25 {
    26 if( M== 1 )
    27 {
    28 int k= 1;
    29 if( s== 0 )
    30 {
    31 k= 0;
    32 }
    33 cnt= e- s+ k;
    34 }
    35 else if( M== 0 )
    36 {
    37 int k= 0;
    38 if( s== 0 )
    39 {
    40 k= 1;
    41 }
    42 cnt= k;
    43 }
    44 printf( "%d\n", cnt );
    45 continue;
    46 }
    47 for( int i= 0; i< N; ++i )
    48 {
    49 rec[i]= gcd( N, i );
    50 if( rec[i]+ 2== M )
    51 {
    52 base++;
    53 }
    54 }
    55 if( s>= N )
    56 {
    57 beg= ( int )ceil( 1.0* s/ N ), end= ( int )floor( 1.0* e/ N );
    58 for( int i= s; i< beg* N; ++i )
    59 {
    60 if( rec[i% N]+ 2== M )
    61 {
    62 cnt++;
    63 }
    64 }
    65 for( int i= end* N; i<= e; ++i )
    66 {
    67 if( i!= N )
    68 {
    69 if( rec[i% N]+ 2== M )
    70 {
    71 cnt++;
    72 }
    73 }
    74 }
    75 cnt+= base* ( end- beg );
    76 if( s== N )
    77 {
    78 if( rec[0]+ 1== M )
    79 {
    80 cnt++;
    81 }
    82 else if( rec[0]+ 2== M )
    83 {
    84 cnt--;
    85 }
    86 }
    87 }
    88 else if( e>= N )
    89 {
    90 end= ( int )floor( 1.0* e/ N );
    91 for( int i= s; i< N; ++i )
    92 {
    93 if( rec[i]== M )
    94 {
    95 cnt++;
    96 }
    97 }
    98 for( int i= end* N; i<= e; ++i )
    99 {
    100 if( i!= N )
    101 {
    102 if( rec[i% N]+ 2== M )
    103 {
    104 cnt++;
    105 }
    106 }
    107 }
    108 cnt+= base* ( end- 1 );
    109 if( rec[0]+ 1== M )
    110 {
    111 cnt++;
    112 }
    113 else if( rec[0]+ 2== M )
    114 {
    115 cnt--;
    116 }
    117 }
    118 else
    119 {
    120 for( int i= s; i<= e; ++i )
    121 {
    122 if( rec[i]== M )
    123 {
    124 cnt++;
    125 }
    126 }
    127 }
    128 printf( "%d\n", cnt );
    129 }
    130 }

      

      

  • 相关阅读:
    John Resig 见面会视频
    《程序员羊皮卷》书评
    用 JavaScript 对 JSON 进行模式匹配 (Part 2 实现)
    工具:开发者使用,企业埋单
    「云端 JavaScript 漫游指南」
    如何让你的网站支持 IE9 Pinned Site (Part 1 理论)
    世界顶级黑客自传:Ghost in the Wires
    MVP Summit 2010 Trip (WA)
    Apple 谈论产品 vs Microsoft 谈论技术
    IBatisNet开发使用小结 之二
  • 原文地址:https://www.cnblogs.com/Lyush/p/2143351.html
Copyright © 2020-2023  润新知