• 机器学习算法随机数据生成


    在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数,但是找到一组十分适合某种特定算法类型的数据样本却不那么容易,还好numpy、sklearn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清晰,归一化,转换,然后选择模型与算法做拟合和预测。

    下面对numpy和sklearn生成数据样本的方法做一个总结。

    完整代码参见GitHub:

    https://github.com/ljpzzz/machinelearning/blob/master/mathematics/random_data_generation.ipynb

    1. numpy随机数据生成API

    numpy比较适合用来生产一些简单的抽样数据,API在random类中,常见的API有:

    1)rand(d0,d1,...,dn)用来生成d0×d1×...×dn维的数据。数组的值在[0,1)之间

    例如:np.random.rand(3,2,2),输出如下3×2×2的数组

         array([[[ 0.49042678,  0.60643763],

             [ 0.18370487,  0.10836908]], 

            [[ 0.38269728,  0.66130293],

             [ 0.5775944 ,  0.52354981]],

             [[ 0.71705929,  0.89453574],

             [ 0.36245334,  0.37545211]]]) 

    2)randn(d0,d1,...,dn)也是用来生成d0×d1×...×dn维的数组,不过数组的值服从N(0,1)的标准正态分布

    例如:np.random.randn(3,2),输出如下3×2的数组,这些值是N(0,1)的抽样数据。

          array([[-0.5889483 , -0.34054626], 

               [-2.03094528, -0.21205145], 

            [-0.20804811, -0.97289898]])

    如果需要服从的正态分布,只需要在randn上每个生成的值x上做变换即刻。

    例如:2*np.random.randn(3,2)+1,输出如下3×2的数组,这些值是N(1,4)的抽样数据。

          array([[ 2.32910328, -0.677016  ], 

            [-0.09049511,  1.04687598], 

            [ 2.13493001,  3.30025852]])

    3)randint(low[,high,size]),生成随机的大小为size的数据,size可以为整数,为矩阵维数,或者张量的维数。值位于半开区间[low,high).

    例如:np.random.randint(3,size=[2,3,4]) 返回维数2×3×4的数据,取值范围为最大值为3的整数。

          array([[[2, 1, 2, 1],
             [0, 1, 2, 1],
             [2, 1, 0, 2]],
             [[0, 1, 0, 0],
             [1, 1, 2, 1],
             [1, 0, 1, 2]]])

    再比如:np.random.randint(3,6,size=[2,3]) 返回的维数为2×3的数据,取值范围为[3,6)

          array([[4, 5, 3],
              [3, 4, 5]])

    4)random_integers(low[,high,size]),和上面的randint类似,区别在于取值范围是闭区间[low,high]。

    5)random_sample([size]),返回随机的浮点数,在半开区间[0.0,1.0]。如果是其他区间[a,b),也可以加以转换(b-a)*random_sample([size])+a

    例如:(5-2)*np.random.random_sample(3)+2 返回[2,5)之间的3个随机数

          array([ 2.87037573,  4.33790491,  2.1662832 ]) 

    2. scikit-learn随机数据生成API介绍

    1)回归模型随机数据

    这里我们使用make_regression生成回归模型数据,几个关键参数有n_sample(生成样本数)、n_features(样本特征数)、noise(样本随机噪音)和coef(是否返回回归系数)。例子代码如下

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 from sklearn.datasets.samples_generator import make_regression
     4  
     5 # X为样本特征,y为样本输出, coef为回归系数,共1000个样本,每个样本1个特征
     6 X, y, coef =make_regression(n_samples=1000, n_features=1,noise=10, coef=True)
     7 # 画图
     8 plt.scatter(X, y,  color='black')
     9 plt.plot(X, X*coef, color='blue',linewidth=3)
    10 
    11 plt.xticks(())
    12 plt.yticks(())
    13 plt.show()

    2)分类模型随机数据

    这里我们用make_classification生成三元分类数据模型,几个关键参数有n_samples(生成样本数)、n_features(样本特征数)、n_redundant(冗余特征数)和n_classes(输出的类别数),例子代码如下:

    1 import numpy as np
    2 import matplotlib.pyplot as plt
    3 from sklearn.datasets.samples_generator import make_classification
    4  
    5 # X1为样本特征,Y1为样本类别输出, 共400个样本,每个样本2个特征,输出有3个类别,没有冗余特征,每个类别一个簇
    6 X1, Y1 = make_classification(n_samples=400, n_features=2, n_redundant=0,
    7                              n_clusters_per_class=1, n_classes=3)
    8 plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)
    9 plt.show()

    3)聚类模型随机数据

    这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数)、n_features(样本特征数)、centers(簇中心个数或者自定义的簇中心)和cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:

    1 import numpy as np
    2 import matplotlib.pyplot as plt
    3 from sklearn.datasets.samples_generator import make_blobs
    4  
    5 # X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共3个簇,簇中心在[-1,-1], [1,1], [2,2], 簇方差分别为[0.4, 0.5, 0.2]
    6 X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [1,1], [2,2]], cluster_std=[0.4, 0.5, 0.2])
    7 plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
    8 plt.show()

    4)元素正态分布混合数据

    我们用make_gaussian_quantiles生成分组多维正态分布的数据。几个关键参数有:n_samples(生成样本数)、n_feature(正态分布的维数)、mean(特征均值)、cov(样本协方差的系数)、n_classes(数据在正态分布中按分位数分配的组数)。例子如下:

    1 import numpy as np
    2 import matplotlib.pyplot as plt
    3 from sklearn.datasets import make_gaussian_quantiles
    4 #生成2维正态分布,生成的数据按分位数分成3组,1000个样本,2个样本特征均值为1和2,协方差系数为2
    5 X1, Y1 = make_gaussian_quantiles(n_samples=1000, n_features=2, n_classes=3, mean=[1,2],cov=2)
    6 plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)
  • 相关阅读:
    tomcat配置虚拟主机
    android widget 开发实例 : 桌面便签程序的实现具体解释和源代码 (上)
    Delphi 2007体验!
    ACE定时器
    Unity--关于优化方面的那些事儿(一)
    LTP介绍
    Java正則表達式入门
    Spring整合Hibernate的步骤
    ThreadPool.QueueUserWorkItem的性能问题
    用Bootstrap 写了个站点
  • 原文地址:https://www.cnblogs.com/qiao101/p/10244245.html
Copyright © 2020-2023  润新知